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Bunch-Timing Measurement

in the Muon Cooling Experiment

Via Rectangular TE0,1,n RF Cavities

1 Introduction

Rick Fernow has suggested the use of an RF cavity to impart a transverse displacement pro-
portional to the longitudinal offset of a muon from the center of the bunch. This would permit
inference of the z and t coordinates of a muon via measurement of transverse coordinates.
Here we sketch the performance of such a device based on analytic approximations, which
have been confirmed for particular cases by numerical integration of the muon trajectories
through the RF cavity.

We find that a good choice might be an 800-MHz rectangular TE0,1,1 cavity of length 20
cm along the beam and 54 cm transverse to the beam, for which the transverse displacement
is 6.2 μm/ps, assuming a peak field strength of 40 MV/m. However, multiple scattering in
the cavity walls, as well as in the tracking system, may limit the timing resolution to many
tens of picoseconds.

2 Generalities

The rf cavity is centered on (x, y, z) = (0, 0, 0). To begin we suppose the cavity is a rectan-
gular box of length b in x (the direction of transverse deflection) and length a in y and z. In
secs. 3.3-6 we generalize the results to cavities of arbitrary aspect ratio in y and z.

The trajectory of a typical beam particle for the cavity field OFF is parametrized as

x = x0 + βxct,

y = y0 + βyct, (1)

z = z0 + βzct,

where c is the speed of light. The beam axis is the z-axis:

βx, βy � βz, and βz ≈ β. (2)

We will make the impulse approximation that the cavity fields do not affect the muon
trajectories in y or z, but only in x. Thus we assume the y and z parametrizations in (1)
also hold when the field in ON.
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The particle is within the cavity during the interval

[tmin, tmax] =

[
− a

2βzc
− z0

βzc
,

a

2βzc
− z0

βzc

]
=

[
− a

2βzc

(
1 +

2z0

a

)
,

a

2βzc

(
1 − 2z0

a

)]
, (3)

so that
tmax − tmin =

a

βzc
. (4)

2.1 Square TE0,1,1 Cavity Fields

As our first example we consider a TE0,1,1 RF cavity operating at angular frequency ω and
phased such that the electric field is maximum at t = 0, i.e., when the center of the bunch
is at the center of the cavity. The wave equation tells us that

ω

c
=

√
2
π

a
, so a =

√
2c

2f
= 26.5 cm for f = 800 MHz. (5)

In Gaussian units the fields are

Ex = E0 cos
πy

a
cos

πz

a
cos ωt,

Ey = Ez = 0,

Bx = 0,

By = +
E0√

2
cos

πy

a
sin

πz

a
sinωt,

Bz = −E0√
2

sin
πy

a
cos

πz

a
sin ωt, (6)

where E0 is the peak electric field.

2.2 Square TE0,1,2 Cavity Fields

The wave equation tells us that for such a cavity

ω

c
=

√
5
π

a
, so a =

√
5c

2f
= 42.0 cm for f = 800 MHz. (7)

The cavity is phased so that the electric field is minimum at t = 0:

Ex = E0 cos
πy

a
sin

2πz

a
sinωt,

Ey = Ez = 0,

Bx = 0,

By =
2E0√

5
cos

πy

a
cos

2πz

a
cos ωt,

Bz =
E0√

5
sin

πy

a
sin

2πz

a
cosωt. (8)
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3 Transverse Displacement: Leading Approximation

To a good approximation the energy of the muon does not change in the RF cavity; γ =
1/
√

1 − β2 remains constant. The x-component of the Lorentz-force law can then be written

dvx

dt
=

e

γm
(Ex + βyBz − βzBy). (9)

The change in the x-velocity due to the RF cavity is

Δvx =
∫ t

tmin

dvx

dt′
dt′, (10)

and the desired transverse displacement across the cavity is

Δx =
∫ tmax

tmin

dt′
∫ t′

tmin

dvx

dt′′
dt′′. (11)

3.1 Square TE0,1,1 Cavity

Using the fields (6) in the Lorentz force we have

dvx

dt
= eE0

γm

{
cos π(y0+βyct)

a
cos π(z0+βzct)

a
cosωt − βy√

2
sin π(y0+βyct)

a
cos π(z0+βzct)

a
sinωt

− βz√
2
cos π(y0+βyct)

a
sin π(z0+βzct)

a
sinωt

}
. (12)

This expression is independent of x and βx (except for the quadratic dependence of βz

on βx when β is constant). We will suppose that

π(y0 + βyct)

a
� 1. (13)

Then the dependence of the x-displacement on y and βy is through the second-order quanti-
ties β2

y and y0βy/a. However, the argument of the functions of z is not small: from (4) and

(5) we see that ω(tmax − tmin) =
√

2π/βz > π.
Then to the first approximation,

dvx

dt
≈ eE0

γm

{
cos

π(z0 + βzct)

a
cos ωt +

βz√
2

sin
π(z0 + βzct)

a
sinωt

}
. (14)

It is useful to introduce the notation

ω′ =
πβzc

a
=

βzω√
2

, and ε =
πz0

a
, (15)

so that
π(z0 + βzct)

a
= ω′t + ε, and ω ± ω′ =

√
2 ± βz√

2
ω. (16)
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We now assume that ε � 1, i.e., that the bunch length is small compared to the cavity
length. Then

dvx

dt
≈ eE0

γm

{
cos(ω′t + ε) cos ωt +

βz√
2

sin(ω′t + ε) sinωt

}

=
eE0

2γm

{√
2 + βz√

2
cos[(ω + ω′)t + ε] +

√
2 − βz√

2
cos[(ω − ω′)t − ε]

}
(17)

We integrate this from tmin to t to find the velocity kick,

Δvx ≈ eE0

2γmω

{
sin[(ω + ω′)t + ε] + sin[(ω − ω′)t − ε]

− sin[(ω + ω′)tmin + ε] − sin[(ω − ω′)tmin − ε]
}

(18)

We integrate (18) from tmin to tmax to find the x-displacement due to the RF fields:

Δx ≈ eE0

2γmw

{ √
2

(
√

2 + βz)ω
(− cos[(ω + ω′)tmax + ε] + cos[(ω + ω′)tmin + ε])

+

√
2

(
√

2 − βz)ω
(− cos[(ω − ω′)tmax − ε] + cos[(ω − ω′)tmin − ε])

− (sin[(ω + ω′)tmin + ε] + sin[(ω − ω′)tmin − ε]) (tmax − tmin)
}
. (19)

To evaluate the various terms in (19) we note from (3), (15) and (16) that

(ω + ω′)tmax + ε =
π

2

(√
2

βz
+ 1

)
−

√
2ε

βz
. (20)

Hence

cos[(ω + ω′)tmax + ε] ≈ cos
π

2

(√
2

βz
+ 1

)
+

√
2ε

βz
sin

π

2

(√
2

βz
+ 1

)

= − sin

√
2π

2βz
+

√
2ε

βz
cos

√
2π

2βz
. (21)

Similarly,

sin[(ω + ω′)tmax + ε] ≈ cos

√
2π

2βz
+

√
2ε

βz
sin

√
2π

2βz
, (22)

(ω + ω′)tmin + ε = −π

2

(√
2

βz
+ 1

)
−

√
2ε

βz
, (23)

cos[(ω + ω′)tmin + ε] ≈ − sin

√
2π

2βz
−

√
2ε

βz
cos

√
2π

2βz
, (24)

sin[(ω + ω′)tmin + ε] ≈ − cos

√
2π

2βz
+

√
2ε

βz
sin

√
2π

2βz
, (25)
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(ω − ω′)tmax − ε =
π

2

(√
2

βz
− 1

)
−

√
2ε

βz
, (26)

cos[(ω − ω′)tmax − ε] ≈ sin

√
2π

2βz
−

√
2ε

βz
cos

√
2π

2βz
, (27)

sin[(ω − ω′)tmax − ε] ≈ − cos

√
2π

2βz
−

√
2ε

βz
sin

√
2π

2βz
, (28)

(ω − ω′)tmin − ε = −π

2

(√
2

βz
− 1

)
−

√
2ε

βz
, (29)

cos[(ω − ω′)tmin − ε] ≈ sin

√
2π

2βz

+

√
2ε

βz

cos

√
2π

2βz

, (30)

and

sin[(ω − ω′)tmin − ε] ≈ cos

√
2π

2βz
−

√
2ε

βz
sin

√
2π

2βz
. (31)

Using (21-31) in (19) and recalling (5) and (15) we find the main result,

Δx ≈ 2
√

2

γ(2 − β2
z )

ηz0 cos

√
2π

2βz
, (32)

in which we have introduced the dimensionless measure of field strength

η =
eE0

mωc
=

eE0

mc2

c

2πf
, (33)

with f as the cavity frequency.
We can also evaluate the transverse-velocity kick at time tmax using eqs. (18) and (21-31),

to find that it vanishes to the first approximation. The muons enter and exit the cavity with
the same x-slope.

We can now consider a numerical example based on the proposed muon cooling experi-
ment. The nominal muon momentum is 165 MeV/c, for which γ = 1.85 and β = 0.84. In
this case cos(

√
2π/2βz) = −0.87.

The nominal frequency of the RF cavity is f = 800 MHz. I suppose that we can achieve
a field strength of 40 MV/m in the cavity. For a muon mc2 = 105.7 MeV, so

η =
40

105.7

3

16π
= 0.0223. (34)

Combining these factors, eq. (33) becomes

Δx = −2
√

2 · 0.0223 · 0.87
1.85 · 1.29 z0 = −0.023z0. (35)

We can convert this to a relation involving the time offset,

Δt =
z0

βzc
, (36)

to find

Δx = −0.023βzcΔt = −0.019cΔt = −5.8[μm]

[
Δt

1 ps

]
. (37)
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3.2 Square TE0,1,2 Cavity

Using the fields (8) in the Lorentz force we have

dvx

dt
= eE0

γm

{
cos π(y0+βyct)

a
sin π(z0+βzct)

a
sinωt + βy√

5
sin π(y0+βyct)

a
sin 2π(z0+βzct)

a
cos ωt

−2βz√
5

cos π(y0+βyct)
a

cos π(z0+βzct)
a

cos ωt
}
. (38)

To the first approximation:

dvx

dt
≈ eE0

γm

{
sin

2π(z0 + βzct)

a
sinωt − 2βz√

5
cos

2π(z0 + βzct)

a
cosωt

}

=
eE0

2γm

{
−
√

5 + 2βz√
5

cos[(ω + ω′)t + ε] +

√
5 − 2βz√

5
cos[(ω − ω′)t − ε]

}
, (39)

where we have introduced the notation

ω′ =
2πβxc

a
=

2βzω√
5

, and ε =
2πz0

a
, (40)

so that
2π(z0 + βzct)

a
= ω′t + ε, and ω ± ω′ =

√
5 ± 2βz√

5
ω. (41)

We integrate (39) from tmin to t to find the velocity kick,

Δvx ≈ eE0

2γmω

{
− sin[(ω + ω′)t + ε] + sin[(ω − ω′)t − ε]

+ sin[(ω + ω′)tmin + ε] − sin[(ω − ω′)tmin − ε]
}

(42)

We integrate (42) from tmin to tmax to find the x-displacement due to the RF fields:

Δx ≈ eE0

2γmw

{ √
5

(
√

5 + 2βz)ω
(cos[(ω + ω′)tmax + ε] − cos[(ω + ω′)tmin + ε])

−
√

5

(
√

5 − 2βz)ω
(cos[(ω − ω′)tmax − ε] − cos[(ω − ω′)tmin − ε])

+ (sin[(ω + ω′)tmin + ε] − sin[(ω − ω′)tmin − ε]) (tmax − tmin)
}
. (43)

To evaluate the various terms in (43) we note from (3), (40) and (41) that

(ω + ω′)tmax + ε =
π

2

(√
5

βz
+ 2

)
−

√
5ε

2βz
, (44)

cos[(ω + ω′)tmax + ε] ≈ − cos

√
5π

2βz
−

√
5ε

2βz
sin

√
5π

2βz
, (45)
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(ω + ω′)tmin + ε = −π

2

(√
5

βz
+ 2

)
−

√
5ε

2βz
, (46)

cos[(ω + ω′)tmin + ε] ≈ − cos

√
5π

2βz

+

√
5ε

2βz

sin

√
5π

2βz

, (47)

sin[(ω + ω′)tmin + ε] ≈ sin

√
5π

2βz
+

√
5ε

2βz
cos

√
5π

2βz
, (48)

(ω − ω′)tmax − ε =
π

2

(√
5

βz
− 2

)
−

√
5ε

2βz
, (49)

cos[(ω − ω′)tmax − ε] ≈ − cos

√
5π

2βz
−

√
5ε

2βz
sin

√
5π

2βz
, (50)

(ω − ω′)tmin − ε = −π

2

(√
5

βz
− 2

)
−

√
5ε

2βz
, (51)

cos[(ω − ω′)tmin − ε] ≈ − cos

√
5π

2βz
+

√
5ε

2βz
sin

√
5π

2βz
, (52)

and

sin[(ω − ω′)tmin − ε] ≈ sin

√
5π

2βz
+

√
5ε

2βz
cos

√
5π

2βz
. (53)

Using (45-53) in (19) and recalling (7) and (41) we find

Δx ≈ 4
√

5

γ(5 − 4β2
z)

ηz0 sin

√
5π

2βz

. (54)

For β = 0.84 we have sin(
√

5π/2βz) = −0.86. Thus for E0 = 40 MV/m

Δx = −4
√

5 · 0.0223 · 0.86
1.85 · 2.18 z0 = −0.0425z0 = −0.0357cΔt = −10.7[μm]

[
Δt

1 ps

]
. (55)

3.3 General TE0,1,1 Cavity

The cavity length in z is still called a, but the length in y is a/α where α will be chosen to
optimize Δx for a given βz.

The wave equation tells us
ω

c
=

√
1 + α2

π

a
. (56)

The results of sec. 3.1 hold on substituting
√

1 + α2 for
√

2:

Δx

ηz0
≈ 2

√
1 + α2

γ(1 + α2 − β2
z)

cos

√
1 + α2π

2βz
=

2γ
√

1 + α2

1 + γ2α2
cos

√
1 + α2π

2βz
. (57)

Expression (57) has a broad maximum at α = 0.58, as shown in Fig. 1. For further discussion,
see sec. 3.6.
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|/η
z
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Transverse Displacement in TE(0,1,n) Cavities
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TE(0,1,3)

TE(0,1,4)

Figure 1: Transverse displacement in 800-MHz rectangular TE0,1,n RF cavities
as a function of the aspect ratio α = z-length/y-length, for βz = 0.84.

3.4 General TE0,1,2 Cavity

The cavity length in z is still called a, but the length in y is a/α where α will be chosen to
maximize Δx for a given βz.

The wave equation tells us
ω

c
=

√
4 + α2

π

a
. (58)

The results of sec. 3.2 hold on substituting
√

4 + α2 for
√

5:

Δx

ηz0
≈ 4

√
4 + α2

γ(4 + α2 − 4β2
z)

sin

√
4 + α2π

2βz
=

2γ
√

1 + (α/2)2

1 + (γα/2)2
sin

√
22 + (α/2)2π

2βz
. (59)

As shown in Fig. 1, expression (59) is nearly constant for α ≤ 1, and falls off for α > 1;
Δx = 0 for α = 2.7. Thus α = 1 is a reasonable choice for a rectangular TE0,1,2 cavity, in
which case Δx/ηz0 = −1.92.

3.5 General TE0,1,n Cavity

The wave equation tells us
ω

c
=

√
n2 + α2

π

a
. (60)

Without having gone through the details, I conjecture from eqs. (57) and (59) that the result
is

Δx

ηz0

≈ 2γ
√

1 + (α/n)2

1 + (γα/n)2
f

(√
n2 + α2π

2βz

)
, where f =

⎧⎪⎨
⎪⎩

cos, n odd,

sin, n even.
(61)
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3.6 Discussion

The transverse displacement Δx must be measured between the entrance and exit of the RF
cavity, i.e., over the length a along the z-axis. Multiple scattering will limit the accuracy of
this measurement, so the ratio |Δx|/aηz0 is the relevant figure of merit.

3210
α

6

4

2

0

|Δ
x

|/
aη

z
0

Angular Displacement in TE(0,1,n) Cavities

TE(0,1,1)

TE(0,1,2)

TE(0,1,3)

TE(0,1,4)

Figure 2: Transverse displacement divided by the cavity length in 800-MHz
rectangular TE0,1,n RF cavities as a function of the aspect ratio α, for βz =
0.84.

Figures 2-4 show the ratio |Δx|/aηz0 as a function of α, a and a/α, respectively. We see
that a while square TE0,1,1 is less effective than square TE0,1,2 and TE0,1,3 cavities, a TE0,1,1

cavity is superior once α < 0.5.
For very small α the cavity height becomes very large, so it would not be practical to

approach this limit. Figure 5 shows the relation between cavity height and length.
An interesting option might be a rectangular TE0,1,1 cavity with α = 0.37, corresponding

to length a = 20 cm, height a/α = 54 cm, transverse displacement Δx/ηz0 = −1.10 and
angular displacement Δx/aηz0 = −5.50. However, for a peak field of 40 MV/m, η = 0.0223
and the transverse displacement is only

|Δx| = 6.2[μm]

[
Δt

1 ps

]
, (62)

corresponding to angular displacement

|Δx|
a

= 30[μrad]

[
Δt

1 ps

]
. (63)
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1.00.80.60.40.20.0

a = Length in z (m)
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TE(0,1,4)

Figure 3: Transverse displacement divided by the cavity length in 800-MHz
rectangular TE0,1,n RF cavities as a function of the cavity length a, for βz =
0.84.

1.00.80.60.40.20.0

a /α = Length in y (m)
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Angular Displacement in TE(0,1,n) Cavities
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TE(0,1,3)

TE(0,1,4)

Figure 4: Transverse displacement divided by the cavity length in 800-MHz
rectangular TE0,1,n RF cavities as a function of the cavity height a/α, for
βz = 0.84.
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1.00.80.60.40.20.0

a = Length in z (m)
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Figure 5: Cavity height a/α as a function of cavity length a.

4 Required Resolution

In the note Princeton/μμ/97-4 we discussed how the detector resolution should be at least
as small as the quantity we wish to measure. In the case of bunch timing we anticipate that
the rms width to be measured is about 40 psec. Taking eq. (63) as representative of the
performance of an RF timing cavity, we need to resolve angular displacements of only 1.2
mrad, and better if possible. This puts a limit on the amount of material in the wall of the
cavity and in the tracking devices of

X0 <
(

0.0012 · 165 · 0.84
15

)2

= 0.00012 radiation lengths. (64)

Thus the entrance and exit walls of a copper RF cavity should be less than 1.7 μm thick, or
less than 43 μm thick if the walls are made of beryllium.

It does not help to stack several timing cavities together, since we are limited by angular
resolution, not spatial resolution.

5 Appendix: Displacements in Cavities Phased by 90◦

We include this for the record, although it is not useful for the present application.

5.1 Square TE0,1,1 Cavity

The fields in a square TE0,1,1 cavity are now

Ex = E0 cos
πy

a
cos

πz

a
sinωt,
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Ey = Ez = 0,

Bx = 0,

By = −E0√
2

cos
πy

a
sin

πz

a
cos ωt,

Bz = +
E0√

2
sin

πy

a
cos

πz

a
cosωt, (65)

To the first approximation,

dvx

dt
≈ eE0

2γm

{√
2 + βz√

2
cos[(ω + ω′)t + ε] +

√
2 − βz√

2
cos[(ω − ω′)t − ε]

}
, (66)

using the notation of eqs. (15-16). The velocity kick is

Δvx ≈ − eE0

2γmω

{
cos[(ω + ω′)tmax + ε] + cos[(ω − ω′)tmax − ε]

+ cos[(ω + ω′)tmin + ε] − cos[(ω − ω′)tmin − ε]
}
, (67)

and the transverse displacement is

Δx ≈ − eE0

2γmw

{ √
2

(
√

2 + βz)ω
(sin[(ω + ω′)tmax + ε] + sin[(ω + ω′)tmin + ε])

+

√
2

(
√

2 − βz)ω
(sin[(ω − ω′)tmax − ε] − sin[(ω − ω′)tmin − ε])

− (cos[(ω + ω′)tmin + ε] − cos[(ω − ω′)tmin − ε]) (tmax − tmin)
}
. (68)

Equations (21-31) hold in the present case as well, so we find

Δx =

√
2βz

πγ
ηλ cos

√
2π

2βz
, (69)

where λ = 37.5 cm is the wavelength at 800 MHz. Thus Δx is independent of the position
z0 of the muon within the bunch. Again

Δvx = 0. (70)
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