Horn and Solenoid Capture Systems for a BNL Neutrino Superbeam

Steve Kahn21 December 2001

Neutrino Study Group Dec 21, 2001

Brookhaven Neutrino Super-Beam Stephen Kahn

Types of Capture/Focus Systems **Considered**

- \bullet Traditional Horn Focus System
	- Uses *toroidal* magnetic field.
	- Focuses efficiently
		- $\textbf{\textdegree} \text{ }\text{B}_{\phi}\perp p_{\parallel}$
	- Conductor necessary along access.
		- Concern for radiation damage.
		- Cannot be superconducting.
	- Pulsed horn may have trouble surviving $\sim 10^9$ cycles that a 1-4 MW system might require.
- \bullet Solenoid Capture System similar to that used by Neutrino Factory
- \bullet Solenoid Horn System

Neutrino Study Group Dec 21, 2001

Super Neutrino Beam from Solenoid **Capture**

•Upgrade AGS to 1MW Proton Driver:

– Both BNL and JHF have eventual plans for their proton drivers to be upgraded to 4 MW.

\bullet Build Solenoid Capture System:

- 20 T Magnet surrounding target. Solenoid field falls off to 1.6 T in 20 m.
- This magnet focuses both π^+ and π^- . Beam will have both v and v
- A solenoid is more robust than a horn magnet in a high radiation.
	- A horn may not function in the 4 MW environment.
	- A solenoid will have a longer lifetime since it is not pulsed.

Neutrino Study Group Dec 21, 2001

Solenoid Capture

Sketch of solenoid arrangement for Neutrino Factory

•If only v and not \bar{v} is desired, then a dipole magnet could be inserted between adjacent solenoids above.

•Inserting a dipole also gives control over the mean energy of the neutrino beam.

•Since v and \bar{v} events can be separated with a modest magnetic field in the detector, it will be desirable to collect both signs of ^ν at the same time.

Neutrino Study Group Dec 21, 2001

A Solenoid as a Horn

• A horn system can be imagined as 3 thin lenses. (Simplistic Model of course.)

The first 2 lenses form the 1st horn and the 3rd lens forms the 2nd horn.

- A similar arrangement could be made using multiple short solenoids as thin lenses.
	- This is being investigated. We do not have results yet.

Neutrino Study Group Dec 21, 2001

Brookhaven Neutrino Super-Beam Stephen Kahn

Simulations to Calculate Fluxes

- \bullet Model Solenoid/Horn Magnet in GEANT.
	- Use Geant/Fluka option for the particle production model.
	- Use 30 cm Hg target (2 interaction lengths.)
		- No target inclination.
			- We want the high momentum component of the pions.
			- Re-absorption of the pions is not a problem.
	- Solenoid Field profile on axis is $B(z)=B_{max}/(1+a z)$
		- Independent parameters are B_{max} , B_{min} and the solenoid length, L .
	- Horn Field is assumed to be a toroid.
	- Pions and Kaons are tracked through the field and allowed to decay.
	- Fluxes are tallied at detector positions.
		- The following plots show v_{μ} flux and v_{e}/v_{μ} flux ratios.

Neutrino Study Group Dec 21, 2001

Captured Pion Distributions

Neutrino Study Group Dec 21, 2001

Brookhaven Neutrino Super-Beam Stephen Kahn

Rate and v_e/v_μ as a function of Decay Tunnel Length for a Solenoid Capture System

Neutrino Study Group Dec 21, 2001

Brookhaven Neutrino Super-Beam Stephen Kahn

Comparison of Horn and Solenoid Focused Beams

- •The Figure shows the spectra at 0° at 1 km from the target.
	- Solenoid Focused Beam.
	- Two Horned Focused Beam designed for E889.
	- So-called *Perfect Focused* beam where every particle leaving the target goes in the forward direction.
		- The perfect beam is not attainable. It is used to evaluate efficiencies.
- • A solenoid focused beam selects a lower energy neutrino spectrum than the horn beam.
	- This may be preferable for CP violation physics

Neutrino Study Group Dec 21, 2001

Brookhaven Neutrino Super-Beam Stephen Kahn

Horn and Solenoid Comparison (cont.)

- • This figure shows a similar comparison of the 1 km spectra at 1.25º off axis.
	- The off axis beam is narrower and lower energy.
- \bullet Also a curve with the *v* flux plus 1/3 the anti-^ν flux is shown in red.
	- – Both signs of ^ν are focused by a solenoid capture magnet.
		- A detector with a magnetic field will be able to separate the charge current ν and anti-^ν.

Neutrino Study Group Dec 21, 2001

Brookhaven Neutrino Super-Beam Stephen Kahn

ν Flux Seen at Off-Axis Angles

•We desire to have *Low Energy* ν beam.

- •We also desire to have a narrow band beam.
- •I have chosen 1.5º off-axis for the calculations.

Neutrino Study Group Dec 21, 2001

ν_e/ν_μ Ratio

- •The figure shows the v_e flux spectrum for the solenoid focused and horn beams.
- \bullet The horn focused beam has a higher energy v_e spectrum that is dominated by $K \rightarrow \pi^o e \nu_e$
- \bullet The solenoid channel is effective in capturing and holding π and μ .
	- The v_e spectrum from the solenoid system has a large contribution at low energy from $\mu \rightarrow v_{\mu} \overline{v}_{e} e$.
	- – The allowed decay path can be varied to reduce the v_e/v_μ ratio at the cost of reducing the v_μ rate.
- •We expect the v_e/v_μ ratio to be ~1%

Neutrino Study Group Dec 21, 2001

Page 12

Detectors Are Placed 1.5^o Off ν Beam Axis

- • Placing detectors at a fixed angle off axis provides a similar $\text{E}_{\tiny{\text{v}}}$ profile at all distances.
- \bullet It also provides a lower E_v distribution than on axis.
- \bullet μ from $π$ decays are captured by long solenoid channel. They provide low E_{v} enhancement.
- \bullet Integrated flux at each detector:
	- Units are v/m^2 /POT

Neutrino Study Group Dec 21, 2001

Brookhaven Neutrino Super-Beam Stephen Kahn

Event Estimates Without Oscillations

- \bullet Below is shown event estimates expected from a solenoid capture system
	- The near detectors are 1 kton and the far detector is 50 kton.
	- The source is a 1 MW proton driver.
	- The experiment is run for 5 Snowmass years. This is the running period used in the JHF-Kamioka neutrino proposal.
	- These are obtained by integrating the flux with the appropriate cross sections.

 \bullet Estimates with a 4 MW proton driver source would be four times larger.

Determination of Δm^2_{23}

- • Consider a scenario where
	- Δm^2_{12} =5×10⁻⁵ eV²
	- $\theta_{23} = \pi/4$
	- Δm^{2} ₃₁=0.0035 eV² (unknown)
	- – $\sin^2 2\theta_{13} = 0.01$ (unknown)
	- – This is the Barger, Marfatia, and Whisnant point Ib.
- \bullet $\langle E_v \rangle = 0.8$ GeV is *not* optimum since I don't know the true value in advance.
- \bullet I can determine Δm^2_{23} from $1.27 \Delta m^2_{23} L/E_0 = \pi/2$

Where E_0 is the corresponding null point

- \bullet Note that these figures ignore the effect of Fermi motion in the target nuclei.
	- This would smear the *distinct* 3π/2 minimum.

Brookhaven Neutrino Super-Beam Stephen Kahn

Solenoid Capture System with 230 m Decay Tunnel

Table 1: Oscillation Signal:

- \bullet Consider $\Delta m^2_{12} = 5 \times 10^{-5} \text{ eV}^2$, $\theta_{23} = \pi/4$ and $\sin^2 2\theta_{13} = 0.01$
- Using a 1 MW proton driver and a 50 kton detector 350 kilometers away.
- ·Experiment running for 5×10^7 seconds.
- Solenoid capture system with v_e/v_μ flux ratio=1.9 %

Significance:

v_e signal: 3.3 s.d.

 v_e signal: 1.3 s.d.

Neutrino Study Group Dec 21, 2001

Brookhaven Neutrino Super-Beam Stephen Kahn

Solenoid Capture System with 100 m Decay Tunnel

Table 1: Oscillation Signal:

- Consider $\Delta m^2_{12} = 5 \times 10^{-5} \text{ eV}^2$, $\theta_{23} = \pi/4$ and $\sin^2 2\theta_{13} = 0.01$
- Using a 1 MW proton driver and a 50 kton detector 350 kilometers away.
- ·Experiment running for 5×10^7 seconds.
- Solenoid capture system with v_e/v_μ flux ratio=1.1 %

Significance:

v_e signal: 3.2 s.d.

v_e signal: 1.8 s.d.

Neutrino Study Group Dec 21, 2001

Horn Beam 200 m Decay Tunnel

E889 Horn Design

Table 1: Oscillation Signal:

- Consider $\Delta m^2_{12} = 5 \times 10^{-5} \text{ eV}^2$, $\theta_{23} = \pi/4$ and $\sin^2 2\theta_{13} = 0.01$
- ·Using a 1 MW proton driver and a 50 kton detector 350 kilometers away.
- ·Experiment running for 5×10^7 seconds.
- · Horn capture system with v_e/v_μ flux ratio=1.08 %

Significance:

v_e signal: 5.8 s.d.

Neutrino Study Group Dec 21, 2001

Anti ν Horn Beam 200 m Decay Tunnel E889 Horn Design

Table 1: Oscillation Signal:

- Consider $\Delta m^2_{12} = 5 \times 10^{-5} \text{ eV}^2$, $\theta_{23} = \pi/4$ and $\sin^2 2\theta_{13} = 0.01$
- Using a 1 MW proton driver and a 50 kton detector 350 kilometers away.
- ·Experiment running for 5×10^7 seconds.
- Horn capture system with v_e/v_μ flux ratio=1.04 %

Ignores ν_e BG oscillations

Significance:

$$
\overline{v}_e
$$
 signal: 2.2 s.d.

Neutrino Study Group Dec 21, 2001