Horn and Solenoid Capture Systems for a BNL Neutrino Superbeam

Steve Kahn 21 December 2001

Neutrino Study Group Dec 21, 2001 Brookhaven Neutrino Super-Beam

Types of Capture/Focus Systems Considered

- Traditional Horn Focus System
 - Uses toroidal magnetic field.
 - Focuses efficiently
 - $B_{\phi} \perp p_{\parallel}$
 - Conductor necessary along access.
 - Concern for radiation damage.
 - Cannot be superconducting.
 - Pulsed horn may have trouble surviving ~10⁹ cycles that a 1-4 MW system might require.
- Solenoid Capture System similar to that used by Neutrino Factory
- Solenoid Horn System

Neutrino Study Group Dec 21, 2001

Super Neutrino Beam from Solenoid Capture

• Upgrade AGS to 1MW Proton Driver:

Machine	Power	Proton/Pulse	Repetition Rate	Protons/SSC year	
Current AGS	0.17 MW	6×10^{13}	0.625 Hz	3.75×10^{20}	
AGS Proton Driver	1 MW	1×10^{14}	2.5 Hz	2.5×10^{21}	
Japan Hadron Facility	0.77 MW	3.3×10^{14}	0.29 Hz	9.6×10^{20}	
Super AGS Prot Driver	4 MW	2×10^{14}	5.0 Hz	1.0×10^{22}	
1 D M 1 T 1		1 1	0 1		

 Both BNL and JHF have eventual plans for their proton drivers to be upgraded to 4 MW.

• Build Solenoid Capture System:

- 20 T Magnet surrounding target. Solenoid field falls off to 1.6 T in 20 m.
- This magnet focuses both π^+ and π^- . Beam will have both v and \overline{v}
- A solenoid is more robust than a horn magnet in a high radiation.
 - A horn may not function in the 4 MW environment.
 - A solenoid will have a longer lifetime since it is not pulsed.

Neutrino Study Group Dec 21, 2001

Solenoid Capture

Sketch of solenoid arrangement for Neutrino Factory

•If only v and not \bar{v} is desired, then a dipole magnet could be inserted between adjacent solenoids above.

•Inserting a dipole also gives control over the mean energy of the neutrino beam.

•Since v and \bar{v} events can be separated with a modest magnetic field in the detector, it will be desirable to collect both signs of v at the same time.

Neutrino Study Group Dec 21, 2001

A Solenoid as a Horn

• A horn system can be imagined as 3 thin lenses. (Simplistic Model of course.)

The first 2 lenses form the 1^{st} horn and the 3^{rd} lens forms the 2^{nd} horn.

- A similar arrangement could be made using multiple short solenoids as thin lenses.
 - This is being investigated. We do not have results yet.

Neutrino Study Group Dec 21, 2001 Brookhaven Neutrino Super-Beam

Simulations to Calculate Fluxes

- Model Solenoid/Horn Magnet in GEANT.
 - Use Geant/Fluka option for the particle production model.
 - Use 30 cm Hg target (2 interaction lengths.)
 - No target inclination.
 - We want the high momentum component of the pions.
 - Re-absorption of the pions is not a problem.
 - Solenoid Field profile on axis is $B(z)=B_{max}/(1+az)$
 - Independent parameters are B_{max} , B_{min} and the solenoid length, L.
 - Horn Field is assumed to be a toroid.
 - Pions and Kaons are tracked through the field and allowed to decay.
 - Fluxes are tallied at detector positions.
 - The following plots show v_{μ} flux and v_{e}/v_{μ} flux ratios.

Neutrino Study Group Dec 21, 2001

Captured Pion Distributions

Neutrino Study Group Dec 21, 2001 Brookhaven Neutrino Super-Beam

Rate and v_e/v_μ as a function of Decay Tunnel Length for a Solenoid Capture System

Neutrino Study Group Dec 21, 2001 Brookhaven Neutrino Super-Beam

Comparison of Horn and Solenoid Focused Beams

- The Figure shows the spectra at 0° at 1 km from the target.
 - Solenoid Focused Beam.
 - Two Horned Focused Beam designed for E889.
 - So-called *Perfect Focused* beam where every particle leaving the target goes in the forward direction.
 - The perfect beam is not attainable. It is used to evaluate efficiencies.
- A solenoid focused beam selects a lower energy neutrino spectrum than the horn beam.
 - This may be preferable for CP violation physics

Neutrino Study Group Dec 21, 2001 Brookhaven Neutrino Super-Beam

Horn and Solenoid Comparison (cont.)

- This figure shows a similar comparison of the 1 km spectra at 1.25° off axis.
 - The off axis beam is narrower and lower energy.
- Also a curve with the v flux plus 1/3 the anti-v flux is shown in red.
 - Both signs of v are focused by a solenoid capture magnet.
 - A detector with a magnetic field will be able to separate the charge current v and anti-v.

Neutrino Study Group Dec 21, 2001 Brookhaven Neutrino Super-Beam

v Flux Seen at Off-Axis Angles

•We desire to have *Low Energy* v beam.

- •We also desire to have a narrow band beam.
- •I have chosen 1.5° off-axis for the calculations.

Angle	Solenoid $v_{\mu}QE$ evts	Solenoid v _µ QE Events	Horn $v_{\mu}QE$ evts	Horn v_{μ} evts
0	4.21×10 ⁶	9.86×10 ⁵	1.38×10 ⁷	1.20×10 ⁵
1⁄4	4.11×10 ⁶	9.56×10 ⁵	1.32×10 ⁷	1.06×10 ⁵
1⁄2	4.10×10 ⁶	9.46×10 ⁵	1.18×10^{7}	1.05×10 ⁵
1	3.80×10 ⁶	8.83×10 ⁵	8.69×10 ⁶	8.27×10^{4}
1.5	3.36×10 ⁶	7.89×10 ⁵	5.98×10 ⁶	7.53×10 ⁴
2	2.88×10^{6}	6.80×10 ⁵	4.01×10^{6}	4.76×10^{4}
3	1.94×10 ⁶	4.64×10 ⁵	1.93×10 ⁶	3.31×10 ⁴
4	1.31×10 ⁶	3.20×10 ⁵	1.02×10^{6}	2.35×10 ⁴

Neutrino Study Group Dec 21, 2001

v_e/v_μ Ratio

- The figure shows the v_e flux spectrum for the solenoid focused and horn beams.
- The horn focused beam has a higher energy v_e spectrum that is dominated by $K \rightarrow \pi^o e v_e$
- The solenoid channel is effective in capturing and holding π and μ .
 - The v_e spectrum from the solenoid system has a large contribution at low energy from $\mu \rightarrow v_{\mu} \overline{v_e} e$.
 - The allowed decay path can be varied to reduce the v_e/v_μ ratio at the cost of reducing the v_μ rate.
- We expect the v_e/v_{μ} ratio to be ~1%

Neutrino Study Group Dec 21, 2001

Stephen Kahn Page 12

Detectors Are Placed 1.5° Off v Beam Axis

- Placing detectors at a fixed angle off axis provides a similar E_v profile at all distances.
- It also provides a lower E_{ν} distribution than on axis.
- μ from π decays are captured by long solenoid channel. They provide low E_v enhancement.
- Integrated flux at each detector:
 - Units are $v/m^2/POT$

Neutrino Study Group Dec 21, 2001 Brookhaven Neutrino Super-Beam

Event Estimates Without Oscillations

- Below is shown event estimates expected from a solenoid capture system
 - The near detectors are 1 kton and the far detector is 50 kton.
 - The source is a 1 MW proton driver.
 - The experiment is run for 5 Snowmass years. This is the running period used in the JHF-Kamioka neutrino proposal.
 - These are obtained by integrating the flux with the appropriate cross sections.

Detector Position	$\nu_{\mu}n \rightarrow \mu^{-}p$	$\nu_{\mu}p \rightarrow \mu^{+}n$	$\nu N { ightarrow} \nu N \pi^{ m o}$	v _e n→e [−] p	$v_e p \rightarrow e^+ n$
At 1 km	3.87×10^7	8.82×10^{6}	3.87×10^{6}	1.32×10^{6}	3.18×10^{5}
At 3 km	4.17×10^{6}	9.44×10^5	4.28×10^{5}	1.31×10^{5}	3.20×10^4
At 350 km	15539	3455	1618	455	150

• Estimates with a 4 MW proton driver source would be four times larger.

Determination of Δm^2_{23}

- Consider a scenario where
 - $-\Delta m_{12}^2 = 5 \times 10^{-5} \, eV^2$
 - $\theta_{23} = \pi/4$
 - $\Delta m_{31}^2 = 0.0035 \text{ eV}^2$ (unknown)
 - $\sin^2 2\theta_{13} = 0.01$ (unknown)
 - This is the Barger, Marfatia, and Whisnant point Ib.
- $\langle E_v \rangle = 0.8 \text{ GeV}$ is *not* optimum since I don't know the true value in advance.
- I can determine Δm_{23}^2 from 1.27 $\Delta m_{23}^2 L/E_0 = \pi/2$

Where E_0 is the corresponding null point

- Note that these figures ignore the effect of Fermi motion in the target nuclei.
 - This would smear the *distinct* $3\pi/2$ minimum.

Solenoid Capture System with 230 m Decay Tunnel

Table 1: Oscillation Signal:

- Consider $\Delta m_{12}^2 = 5 \times 10^{-5} \text{ eV}^2$, $\theta_{23} = \pi/4$ and $\sin^2 2\theta_{13} = 0.01$
- Using a 1 MW proton driver and a 50 kton detector 350 kilometers away.
- Experiment running for 5×10^7 seconds.
- \cdot Solenoid capture system with $\nu_e/\nu_\mu\,$ flux ratio=1.9 %

	$ u_{\mu}$	v_e Signal	$v_e BG$	$\overline{\nu_{\mu}}$	v_{e} signal	$\bar{v_e}$ BG
$\Delta m_{13}^2 eV^2$	ν	v_ signal	v_ background	Anti v,	Anti v signal	Anti v BG
No Oscillation	15539		455	3455		150
0.002	5065	76	455	1096	18.5	150
0.0035	5284	70	455	1283	16.2	150
0.005	7722	55	455	1762	13.1	150

Significance:

 v_e signal: 3.3 s.d.

 \overline{v}_{e} signal: 1.3 s.d.

Neutrino Study Group Dec 21, 2001

Solenoid Capture System with 100 m Decay Tunnel

Table 1: Oscillation Signal:

- Consider $\Delta m_{12}^2 = 5 \times 10^{-5} \text{ eV}^2$, $\theta_{23} = \pi/4$ and $\sin^2 2\theta_{13} = 0.01$
- Using a 1 MW proton driver and a 50 kton detector 350 kilometers away.
- Experiment running for 5×10^7 seconds.
- \cdot Solenoid capture system with $\nu_e/\nu_\mu\,$ flux ratio=1.1 %

	v_{μ}	v_e signal	$v_e BG$	$\overline{\nu}_{\mu}$	\overline{v}_{e} signal	$\overline{\nu}_{e}$ BG
$\Delta m_{13}^2 eV^2$	ν	v_ signal	v background	Anti v	Anti v_ signal	Anti v_ BG
No Oscillation	10582		249	2560		47
0.002	3600	58	249	878	14.4	47
0.0035	4282	50	249	1090	12.3	47
0.005	5283	43	249	1303	10.6	47
			•			

Significance:

 v_e signal: 3.2 s.d.

 $\overline{\nu}_{e}$ signal: 1.8 s.d.

Neutrino Study Group Dec 21, 2001

Horn Beam 200 m Decay Tunnel

E889 Horn Design

Table 1: Oscillation Signal:

- Consider $\Delta m_{12}^2 = 5 \times 10^{-5} \text{ eV}^2$, $\theta_{23} = \pi/4$ and $\sin^2 2\theta_{13} = 0.01$
- Using a 1 MW proton driver and a 50 kton detector 350 kilometers away.
- Experiment running for 5×10^7 seconds.
- · Horn capture system with v_e/v_μ flux ratio=1.08 %

	ν_{μ} ν_{e} Signal ν_{e} BG			ν_{μ}	v_e signal	$v_e BG$
$\Delta m_{13}^2 eV^2$	ν	v_ signal	v_ background	Anti v,	Anti v _e signal	Anti v _e BG
No Oscillation	21645		272	228		5.4
0.002	8317	83	272	115	1	5.4
0.0035	5165	95	272	84	1	5.4
0.005	9966	69	272	90	1	5.4

Significance:

 v_e signal: 5.8 s.d.

Neutrino Study Group Dec 21, 2001

Anti v Horn Beam 200 m Decay Tunnel E889 Horn Design

Table 1: Oscillation Signal:

- Consider $\Delta m_{12}^2 = 5 \times 10^{-5} \text{ eV}^2$, $\theta_{23} = \pi/4$ and $\sin^2 2\theta_{13} = 0.01$
- Using a 1 MW proton driver and a 50 kton detector 350 kilometers away.
- Experiment running for 5×10^7 seconds.
- · Horn capture system with v_e/v_{μ} flux ratio=1.04 %

	$ u_{\mu}$	v_e Signal	$v_e BG$	$\overline{\nu_{\mu}}$	v_{e} signal	$\bar{\nu_e}$ BG
$\Delta m_{13}^2 eV^2$	v	v signal	v_ background	Anti v,	Anti v_ signal	Anti v BG
No Oscillation	691		19	4354		65
0.002	506	4	19	1576	19.7	65
0.0035	305	4.7	19	1018	17.8	65
0.005	331	4.5	19	2074	13.9	65
			1			K

Ignores $v_e BG$ oscillations

Significance:

$$\overline{v_{e}}$$
 signal: 2.2 s.d.

Neutrino Study Group Dec 21, 2001