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The Opportunity for 3-Generation Neutrino Physics

Super-K = oscillation of atmospheric neutrinos.

Super-K and SNO favor LMA solar neutrino solution, and disfavor

sterile neutrinos.
= Physics beyond the standard model, such as SO(10) SUSY.

Three massive neutrinos = six independent parameters:

e T'wo differences of the squares of the neutrino masses:
1.6 < Am3; = Am?*(atmos) < 3.6 x 1072 eVZ @ 90% c.l.
2 x 1072 < Am?, = Am?(solar) < 1.5 x 107 eVZ @ 90% c.1.

e Three mixing angles: 615 ~ 30°, 013 < 10°, 093 &= 45°.

e A phase ¢ related to CP violation (unknown).

Measurement goals of new experiments:

1. SiH2 2(913.
2. Sign of Am3,. (Sign of Am3, known if LMA solution correct.)

3. Ocp.



With conventional neutrino beams (7 — pv,), all 3 measurements

can be pursued via v, — v, appearance.

Best resolution if observe near first (or second) 2-3 oscillation:
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= Can’t optimize choice of L and E,, until Am3; known to +20%.
(One year of MINOS in nominal NUMI beam.)

Can’t justify “prime time” effort until know that sin® 26,5 is large

enough that dcp is accessible.



AmZ, [eV?]

Quality of measurement of dcp and sign of Am3; also affected by

value of Am3,.
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Use ~ 1 GeV Neutrinos

Production rate is high.

[nteractions are simple < quasielastic (no pions).
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Use an Off-Axis Neutrino Beam (BNL E-889)

m — pv decay kinematics has a Jacobian peak: 6 ~

(Sternheimer, 1955)
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Off-Axis Beam
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Intrinsic background: v. /v, (peak)~ 0.002 (0.005 for sin®26,3)



Can Study CP Violation at L/F = (2n+1)500 km /GeV
[Marciano, hep-ph/0108181]

The nth maximum of »-v5 oscillations occurs at

L/E =~ (2n +1)500 km/GeV.

The CP asymmetry grows with distance:
P(V/J — Ve) — P(DM — De) N 2519C19C93S11 0 (Am%z) Am%BL
4F,

A —

P, — v.)+ P, — 1) 523513 Amsy

0A 1 E,
y ~ AVN X VN ~ independent of L at fixed E,,.

Neyents < 1/ L?, = Hard to make other measurements at large L.

=

Low E, tavorable for CP violation measurements.

But since need to disentangle matter effects from CP asymmetries,

this suggests use of 2 detectors at oscillation maxima n = 0 and
n=1or2 =R=L"/L=3orb.

Small s13 = sin #1353 = large CP asymmetry, but low rates.

= May be difficult to untangle sin 0 and s13.



Strategy Overview

e Phase I: New search for sin” 26,5 with sensitivity better than

MINOS/NUMI, Super-K/J2K, ICARUS/CNGS.

e Phase II: If sin® 26,3 large enough, upgrade (or new) beam and

detector to study CP violation and measure sign of Ams3s.

e Combine neutrino oscillation physics with nucleon decay

measurement.

e Phase I: Use a 1° off-axis NUMI beam at ~ 2 GeV with a
20-30 kton liquid argon detector sited under a bluft at Silver
Creek, MN, 640 km from FNAL, 1640 km from BNL.
= sin® 2013 to 0.003, 7/B(p — K*v) to 103 year.

e Phase II, Option A:

1. Build 100-200 kton liquid argon detector near Adams, WI,
260 km from FNAL, 1410 km from BNL.

2. Upgrade FNAL beam with a 4-MW, 8GeV proton driver.

3. New v beam at BNL with a 1-4 MW proton driver.

= sin® 26013 to 0.0003, 7/B(p — Kv) to 10% year, search for

CP violation and measurement of sign of Am3;.
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Overview, cont’d

e Phase II, Option B:
1. Build 100-200 kton liquid argon detector near Adams, WI,
260 km from FNAL, 1410 km from BNL.
2. Upgrade FNAL beam with a 4-MW, 8GeV proton driver.
3. Build new detector in Saskatchewan, 1200 km from FNAL.

e Phase II, Option C:
1. Build 100-200 kton liquid argon detector near Lansing, N,
350 km from BNL.
2. New v beam at BNL with a 4 MW proton driver.

e Phase II, Option C cheaper than Option A,
but must study CP violation with Lansing detector during

separate runs from measurement of sign of Am3; with Silver

Creek detector.

e Phase II, Option B may be cheapest of all, but baseline to far
detector only =~ 1200 km.



Off-Axis Neutrino Beams from BNL and FNAL

Site Dist. (km) Dist. (km) Lat. Long. /pnaL to

to BNL  to FNAL Soudan
Soudan 1710 735 47.82° -92.24° —
Silver Creek 1640 640 47.11° -91.59°  0.9°
Adams’ Bluft 1410 260 43.95° -89.59°  2.2°
Saskatchewan 2110 1260 52.0° -95.65°  2.4°
Lansing 350 970 42.51° —

-76.52°
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Silver Creek, MN, lat. 47.11°, long. —91.58°

500" overburden with horizontal tunnel.
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Adam’s Bluff, WI, lat. 43.95°, long. —89.59°

300" overburden with horizontal tunnel.
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Off-Axis Neutrino Beams from CERN

Site Distance Lat. Long. /cgrn
to CERN (km) to Leuca
Voghera 270 44.9°  8.95° 4.4°
Florence 490 43.7° 11.15°  3.9°
Gran Sasso 730 42.45° 13.57°  2.5°
Leuca 1225 39.8° 18.35° —

Could also use converted LNG tanker in the Gulf of Taranto.
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Off-Axis Neutrino Beams from JHF

Site Distance Lat. Long. / JHF
to JHF (km) to Super-K
Super-K 295 36.42° 137.31° —
Korea 1220 35.7°  127.0° 4.2°
China 1955 34.6° 119.0° 7.5°
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Liquid Argon is the Best Detector Choice

e Density = 1.4; Xy = 14 cm; can drift electrons 2-4 m.
e 100% sampling tracking and calorimetry.
e Construction is simplest of large neutrino detector options.

e Best rejection of neutral current backgrounds, including soft
7¥’s.
e 10 times better per kton than water Cerenkov for v, — Ve

appearance (Harris).
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ICARUS — a Working Liquid Argon Detector
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e Operates at the Earth’s surface with near zero overlap of

cosmic ray events.
e Operates with deadtimeless, selftriggering electronics.
e Liquid argon costs =~ $0.7M /kton.

e Minimize cost of a large detector by building a single module.
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LANNDD — Liquid Argon Neutrino and Nucleon
Decay Detector
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Is a 100-kton Liquid Argon Detector Feasible?

e Use mature, low-cost technology of liquid methane storage
tanks (up to 300 kton based on existing structures).

Preliminary budget estimate from industry of < $20M for a
100-kton tank, IF built on the SURFACE.

e 100 kton of liquid argon = 10% of USA annual production.
= Deliver one trailer-load every 2 hours from Chicago,....
Only 5 ppm O grade available in large quantities,
= On-site liquid-phase purification via Oxisorb (MG).
Raw material, delivery + purification = $0.8M /kton.

e ICARUS electronics from CAEN @ $100/channel.
3 mm wire spacing = 300k ch = $30M.
9 mm wire spacing = 100k ch = $10M.
High capacity of long wires = signal may be too weak to use

3 mm spacing.

e With neutrino beam, record every pulse (1072 duty factor).
Cosmic rays occupy ~ 1072 of active volume,
= = 10 MB data per trigger.
= Modest (< $10M) DAQ/computer system.
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200-kton Cryogenic Tanks Used for LNG Storage
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Chicago Bridge & Iron: can build 100-kton LAr tank for < $20M.
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Cryogenic LNG Storage Tanks
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LANNDD Cryogenic System
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— Applied Cryogenic Technology + Cosmodyne.
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Can a Proton Decay Search Be Done at the Surface?

e The signature of the decay p — K 1w is particularly clean:
Kt—at—u" —e'.

= Maybe “no background” to 10%° year even at surface.

e Need 100% duty factor for proton decay search.
== 10 GB/sec data rate at surface.

e May need to go underground (100 m?) to suppress the data
rate.

= Additional $100M to site detector underground.

e Cheaper to buy a big DAQ system and operate at the surface
— if backgrounds are OK there.
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Budget Estimate (Very Rough)

For a 100-kton detector at the surface:

1. Liquid argon (industrial grade) ........................ $70M
2. Cryogenic storage tank .......... ... ... .. ... ... ..., $20M
3. Surface site preparation ............. ... .. ... ... ... $10M
4. Cryo plant, including Oxisorb purifiers ................ $10M
5. Electronics (200k channels) ........................... $20M
6. Computer Systems ............... ... ... $10M
7.Subtotal ... $140M
8. Contingency ... $60M
9. Total ... .. .. . $200M

Cost Scaling: Argon o< mass; rest o< mass>/>.

25-kton detector ...... ... ... $70M

5-kton detector ...... ... ... $20M
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R&D Topics

e Liquid-phase purification of industrial grade argon via Oxisorb.
e Mechanics and electronics of wires up to 60-m long.

e Cryogenic feedthroughs, possibly including buffer volume at
150K for low-noise FET"s.

e Verify operation of a liquid argon TPC at 10 atmospheres
(as at bottom of a 100-kton tank).

e For eventual use at a neutrino factor, verify operation of a
liquid argon TPC in a magnetic field
(proposals submitted to BNL, CERN).

Simulation Studies

e What is maximum wire spacing consistent with
cood background rejection of neutral current events,

good 7 identification?

e What is shallowest depth at which proton decay search can be

performed to 10% vyear for p — e™n" and p — K17
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