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Post-Nobel Opportunities

Data from atmospheric and solar neutrino experiments

⇒ Rich follow-up physics at accelerators and reactors.

Parameter Atmos. Solar Accel. Reactor β Decay
∣∣∣∣∆M 2

23

∣∣∣∣ ID PM

θ23 ID PM
∣∣∣∣∆M 2

12

∣∣∣∣ ID PM PM

Sign(∆M 2
12) ID = PM

θ12 ID PM PM

νsterile ID, PM

Sign(∆M 2
23) ID = PM ID = PM

θ13 ID, PM ID

∆CP ID, PM

Mν ID

(ID = Initial Discovery, PM = Precision Measurement)

No evidence for proton decay, “theories” apparently not falsifiable,

⇒ Linkage with neutrino expts. should be driven by the latter.
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Visions of Grandeur

If CP violation is measurable in the neutrino sector, it will require

a very substantial effort.

Three grand visions (each on 3 continents ⇒ 9 giant expts.?):

1. 1-4 MW Superbeams (νµ from π decay) + 0.1-1 Mton detectors

[limited to sin2 2θ23
>∼ 0.005 by νe in beam] ($0.5-1.5B).

2. β beams (ν̄e from 6He, νe from 19Ne) + 1-Mton detectors

($1.5B).

3. Neutrino factory (µ → νµν̄ee) + 0.1-1 Mton detectors ($2-3B).

Physics case: Must first determine if sin2 2θ13 is large enough to

justify expense of a grand effort to measure δC.

Budget reality: Implementation of these grand visions will require

sacrifice of smaller efforts.

⇒ Need success of near-term, mid-sized efforts before launch a big

experiment.

Corollary: A megaton proton-decay expt. should be deferred until

the linked path to a large accelerator-based neutrino expt. is clear.
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Multimegawatt Sources

Rate ∝ (neutrino flux) (detector mass).

Cost optimization ⇒ Source cost ≈ Detector cost.

Cost of 4 MW proton source for neutrino beams is less than cost

of a 1 Mton neutrino detector.

⇒ Strong interest in developing 4-MW proton sources for neutrino

beams (+ neutron spallation, accelerator production of tritium,

accelerator transmutation of radioactive waste, ...)

But, solid targets not viable at 4-MW due to beam heating,

thermal shock and radiation damage,

⇒ Free liquid jet target may be the most appropriate.

BNL E-951 is presently exploring feasibility of mercury jet targets

(+ other backup options).
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Studies of Proton Beam + Mercury Jet

Proton

Beam

Mercury

Jet

1-cm-diameter Hg jet in 2e12 protons at t = 0, 0.75, 2, 7, 18 ms.

     

Model: vdispersal =
∆r

∆t
=

rα∆T

r/vsound
=

αU

C
vsound ≈ 50 m/s

for U ≈ 100 J/g.

Data: vdispersal ≈ 10 m/s for U ≈ 25 J/g.

vdispersal appears to scale with proton intensity.

The dispersal is not destructive.

Next step: Mercury jet in beam inside 15-T magnetic field.
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The Neutrino Horn Issue

• 4 MW proton beams are achieved in BNL, CERN and FNAL

scenarios via high rep rates: ≈ 106/day.

• Classic neutrino horns based on high currents in conductors

that intercept much of the secondary pions will have lifetimes

of only a few days in this environment.

• Consider instead a solenoid horn with conductors at larger radii

than the pions of interest (c.f., Neutrino Factory Design).

• Adiabatic reduction of the solenoid field along the axis,

⇒ Adiabatic reduction of pion transverse momentum,

⇒ Focusing.

• No sign selection in horn, ⇒ Both νu and ν̄mu, ⇒ Detector

must measure sign of final-state µ or e.

See, http://pubweb.bnl.gov/users/kahn/www/talks/Homestake.pdf
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Liquid Argon the Best Detector to Study sin2 2θ13 in

the NUMI Beamline

• ≈ 10 times better per kton than water Čerenkov for νµ → νe

appearance at 1-2 GeV (Harris).

• Density = 1.4; X0 = 14 cm; can drift electrons 2-4 m.

• 100% sampling tracking and calorimetry.

• Construction is simplest of large neutrino detector options.

• Best rejection of neutral current backgrounds, including soft

π0’s.
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ICARUS – a Working Liquid Argon Detector

• Operates at the Earth’s surface with near zero overlap of

cosmic ray events.

• Operates with deadtimeless, selftriggering electronics.
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LANNDD – 100 kton Liquid Argon Neutrino and

Nucleon Decay Detector

9



Is a 100-kton Liquid Argon Detector Feasible?

• Use mature, low-cost technology of liquid methane storage

tanks (up to 300 kton based on existing structures).

Preliminary budget estimate from industry of < $20M for a

100-kton tank, IF built on the SURFACE.

• 100 kton of liquid argon = 10% of USA annual production.

⇒ Deliver one trailer-load every 2 hours from Chicago,....

Only 5 ppm O2 grade available in large quantities,

⇒ On-site liquid-phase purification via Oxisorb (MG).

Raw material, delivery + purification ⇒ $0.8M/kton.

• ICARUS electronics from CAEN @ $100/channel.

3 mm wire spacing ⇒ 300k ch ⇒ $30M.

9 mm wire spacing ⇒ 100k ch ⇒ $10M.

High capacity of long wires ⇒ signal may be too weak to use

3 mm spacing.

• With neutrino beam, record every pulse (10−3 duty factor).

Cosmic rays occupy ≈ 10−3 of active volume,

⇒ ≈ 10 MB data per trigger.

⇒ Modest (< $10M) DAQ/computer system.
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200-kton Cryogenic Tanks Used for LNG Storage

Chicago Bridge & Iron: can build 100-kton LAr tank for < $20M.
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Cryogenic LNG Storage Tanks
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Strong Interest by Praxair

Praxair is the leading USA vendor of liquid argon.

The Praxair R&D Lab in Tonawanda, NY is same Union Carbide

lab that provided the expertise to build the Oak Ridge gaseous

diffusion plant in the 1940’s.
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100 kton of Liquid Argon as a Detector for p → K+ν̄

Efficiency for this mode is ≈ 10 times that of water Čerenkov.

This mode favored in many SUSY models.

Can a Proton Decay Search Be Done at the Surface?

• The signature of the decay p → K+ν is particularly clean:

K+ → π+ → µ+ → e+.

⇒ Maybe “no background” to 1035 year even at surface.

• Need 100% duty factor for proton decay search.

⇒≈ 10 GB/sec data rate at surface.

• May need to go underground (100 m?) to suppress the data

rate.

⇒ Additional $100M to site detector underground.

• Cheaper to buy a big DAQ system and operate at the surface

– if backgrounds are OK there.
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Budget Estimate (Very Rough)

For a 100-kton detector at the surface:

Component Cost

Liquid argon (industrial grade) $70M

Cryo plant, including Oxisorb purifiers $10M

Surface site preparation $10M

Cryogenic storage tank $20M

Electronics (300k channels) $30M

Computer systems $10M

Subtotal $150M

Contingency $50M

Total $200M
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Next Steps

• 40-ton near detector (1.5-ton fid. mass) in off-axis NUMI beam.

• BNL P-965 to study a liquid argon TPC in a magnetic field.

Should identify sign of e± up to ≈ 3 Gev in a 0.5-T field.
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