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Post-Nobel Opportunities

Data from atmospheric and solar neutrino experiments

= Rich follow-up physics at accelerators and reactors.

Parameter Atmos.  Solar Accel. Reactor (3 Decay
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AME 1D PM PM
Sign(AM?,) ID = PM
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Sign(AM3,) ID = PM ID = PM

613 ID, PM ID
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M, ID

(ID = Initial Discovery, PM = Precision Measurement)

No evidence for proton decay, “theories” apparently not falsifiable,

= Linkage with neutrino expts. should be driven by the latter.



Visions of Grandeur

[f CP violation is measurable in the neutrino sector, it will require

a very substantial effort.

Three grand visions (each on 3 continents = 9 giant expts.?):

1. 1-4 MW Superbeams (v, from 7 decay) + 0.1-1 Mton detectors
limited to sin® 263 2 0.005 by v, in beam] ($0.5-1.5B).

2. 3 beams (7, from He, v, from "Ne) + 1-Mton detectors

($1.5B).

3. Neutrino factory (4 — v,v.e) 4+ 0.1-1 Mton detectors ($2-3B).

Physics case: Must first determine if sin® 26,5 is large enough to

justify expense of a grand effort to measure 0¢.

Budget reality: Implementation of these grand visions will require

sacrifice of smaller efforts.

= Need success of near-term, mid-sized efforts before launch a big

experiment.

Corollary: A megaton proton-decay expt. should be deferred until

the linked path to a large accelerator-based neutrino expt. is clear.



Multimegawatt Sources

Rate o< (neutrino flux) (detector mass).
Cost optimization = Source cost &~ Detector cost.

Cost of 4 MW proton source for neutrino beams is less than cost

of a 1 Mton neutrino detector.

= Strong interest in developing 4-MW proton sources for neutrino
beams (4 neutron spallation, accelerator production of tritium,

accelerator transmutation of radioactive waste, ...)

But, solid targets not viable at 4-MW due to beam heating,
thermal shock and radiation damage.,

= Free liquid jet target may be the most appropriate.

BNL E-951 is presently exploring feasibility of mercury jet targets
(+ other backup options).



Studies of Proton Beam 4+ Mercury Jet

Proton
Beam
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Mercury
Jet
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Model: Udispersal — At — T/Usound — C Usound == 00 m/S
for U ~ 100 J/g.
Data: vqispersal = 10 m/s for U ~ 25 J/g.

Udispersal appears to scale with proton intensity.

The dispersal is not destructive.

Next step: Mercury jet in beam inside 15-T magnetic field.



The Neutrino Horn Issue

e 4 MW proton beams are achieved in BNL, CERN and FNAL

scenarios via high rep rates: ~ 10°/day.

e Classic neutrino horns based on high currents in conductors
that intercept much of the secondary pions will have lifetimes

of only a few days in this environment.

e Consider instead a solenoid horn with conductors at larger radii

than the pions of interest (c.f., Neutrino Factory Design).

e Adiabatic reduction of the solenoid field along the axis,
= Adiabatic reduction of pion transverse momentum,

= Focusing.

il [ ===
B decreases with z, == P; decreases also
p ﬁ
M

e No sign selection in horn, = Both v, and 7,,,u, = Detector

must measure sign of final-state u or e.

See, http://pubweb.bnl.gov /users/kahn /www /talks /Homestake.pdf
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Liquid Argon the Best Detector to Study sin®26;; in
the NUMI Beamline

e ~ 10 times better per kton than water Cerenkov for V), — Vg

appearance at 1-2 GeV (Harris).
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e Density = 1.4; Xy = 14 cm; can drift electrons 2-4 m.
e 100% sampling tracking and calorimetry.
e Construction is simplest of large neutrino detector options.

e Best rejection of neutral current backgrounds, including soft

Vs,



ICARUS — a Working Liquid Argon Detector
Full 2D View from the Col

e Operates at the Earth’s surface with near zero overlap of

cosmic ray events.

e Operates with deadtimeless, selftriggering electronics.
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LANNDD - 100 kton Liquid Argon Neutrino and

Nucleon Decay Detector
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Is a 100-kton Liquid Argon Detector Feasible?

e Use mature, low-cost technology of liquid methane storage
tanks (up to 300 kton based on existing structures).

Preliminary budget estimate from industry of < $20M for a
100-kton tank, IF built on the SURFACE.

e 100 kton of liquid argon = 10% of USA annual production.
= Deliver one trailer-load every 2 hours from Chicago,....
Only 5 ppm O grade available in large quantities,
= On-site liquid-phase purification via Oxisorb (MG).
Raw material, delivery + purification = $0.8M /kton.

e [CARUS electronics from CAEN @ $100/channel.
3 mm wire spacing = 300k ch = $30M.
9 mm wire spacing = 100k ch = $10M.
High capacity of long wires = signal may be too weak to use

3 mm spacing.

e With neutrino beam, record every pulse (1072 duty factor).
Cosmic rays occupy ~ 1072 of active volume,
= = 10 MB data per trigger.
= Modest (< $10M) DAQ/computer system.
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200-kton Cryogenic Tanks Used for LNG Storage
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Chicago Bridge & Iron: can build 100-kton LAr tank for < $20M.
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Cryogenic LNG Storage Tanks

12



Strong Interest by Praxair

Praxair is the leading USA vendor of liquid argon.

The Praxair R&D Lab in Tonawanda, NY is same Union Carbide
lab that provided the expertise to build the Oak Ridge gaseous
diffusion plant in the 1940’s.
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100 kton of Liquid Argon as a Detector for p — K*v

Efficiency for this mode is /& 10 times that of water Cerenkov.

This mode favored in many SUSY models.
Can a Proton Decay Search Be Done at the Surface?

e The signature of the decay p — K1v is particularly clean:

Kt -7t —ut —et.

= Maybe “no background” to 10% year even at surface.

e Need 100% duty factor for proton decay search.
== 10 GB/sec data rate at surface.

e May need to go underground (100 m?) to suppress the data

rate.
= Additional $100M to site detector underground.

e Cheaper to buy a big DAQ) system and operate at the surface
— if backgrounds are OK there.
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Budget Estimate (Very Rough)

For a 100-kton detector at the surface:

Component Cost
Liquid argon (industrial grade) $70M
Cryo plant, including Oxisorb purifiers  $10M
Surface site preparation $10M
Cryogenic storage tank $20M
Electronics (300k channels) $30M
Computer systems $10M
Subtotal $150M
Contingency $50M
Total $200M
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Next Steps

e 40-ton near detector (1.5-ton fid. mass) in off-axis NUMI beam.
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e BNL P-965 to study a liquid argon TPC in a magnetic field.

2.5GeV/c et simulaion@ E=1T

Special features

#) Primary e® momentum — curvature radius obtained
by the calorimetric energy measurement

b) In case of initial soft bremsstrahlung y's, the primary
e* remembers its original direction — long effective x
for bending

¢) With initial hard bremsstrahlung s — reduced
primary e £ energy — low P — small curvature radius

VENICE, 2001

nal Warkshop ¢

A, Bueno, M. Campanelli, A Rubbia,

Should identify sign of e* up to ~ 3 Gev in a 0.5-T field.
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