Strategies for Future Neutrino Experiments: Remarks on Neutrino Sources and Detectors

Kirk T. McDonald

Princeton U.

kirkmcd@princeton.edu

Neutrinos and Implications for Physics Beyond the Standard Model

Stony Brook, NY, October 13, 2002

http://puhep1.princeton.edu/~mcdonald/nufact/

Post-Nobel Opportunities

Data from atmospheric and solar neutrino experiments

 \Rightarrow Rich follow-up physics at accelerators and reactors.

Parameter	Atmos.	Solar	Accel.	Reactor	β Decay
$\left \Delta M_{23}^2 ight $	ID		PM		
$ heta_{23}$	ID		PM		
$\left \Delta M_{12}^2 ight $		ID	PM	PM	
$\operatorname{Sign}(\Delta M_{12}^2)$		ID = PM			
$ heta_{12}$		ID	PM	PM	
$ u_{ m sterile}$			ID, PM		
$\operatorname{Sign}(\Delta M_{23}^2)$			ID = PM	ID = PM	
$ heta_{13}$			ID, PM	ID	
Δ_{CP}			ID, PM		
$M_ u$					ID

(ID = Initial Discovery, PM = Precision Measurement)

No evidence for proton decay, "theories" apparently not falsifiable, ⇒ Linkage with neutrino expts. should be driven by the latter.

Visions of Grandeur

If CP violation is measurable in the neutrino sector, it will require a very substantial effort.

Three grand visions (each on 3 continents \Rightarrow 9 giant expts.?):

- 1. 1-4 MW Superbeams (ν_{μ} from π decay) + 0.1-1 Mton detectors [limited to $\sin^2 2\theta_{23} \gtrsim 0.005$ by ν_e in beam] (\$0.5-1.5B).
- 2. β beams ($\bar{\nu}_e$ from ⁶He, ν_e from ¹⁹Ne) + 1-Mton detectors (\$1.5B).
- 3. Neutrino factory $(\mu \to \nu_{\mu} \bar{\nu}_e e) + 0.1$ -1 Mton detectors (\$2-3B).

Physics case: Must first determine if $\sin^2 2\theta_{13}$ is large enough to justify expense of a grand effort to measure δ_C .

Budget reality: Implementation of these grand visions will require sacrifice of smaller efforts.

⇒ Need success of near-term, mid-sized efforts before launch a big experiment.

Corollary: A megaton proton-decay expt. should be deferred until the linked path to a large accelerator-based neutrino expt. is clear.

Multimegawatt Sources

Rate \propto (neutrino flux) (detector mass).

Cost optimization \Rightarrow Source cost \approx Detector cost.

Cost of 4 MW proton source for neutrino beams is less than cost of a 1 Mton neutrino detector.

⇒ Strong interest in developing 4-MW proton sources for neutrino beams (+ neutron spallation, accelerator production of tritium, accelerator transmutation of radioactive waste, ...)

But, solid targets not viable at 4-MW due to beam heating, thermal shock and radiation damage,

 \Rightarrow Free liquid jet target may be the most appropriate.

BNL E-951 is presently exploring feasibility of mercury jet targets (+ other backup options).

Studies of Proton Beam + Mercury Jet

1-cm-diameter Hg jet in 2e12 protons at t = 0, 0.75, 2, 7, 18 ms.

Model:
$$v_{\text{dispersal}} = \frac{\Delta r}{\Delta t} = \frac{r\alpha\Delta T}{r/v_{\text{sound}}} = \frac{\alpha U}{C}v_{\text{sound}} \approx 50 \text{ m/s}$$

for $U \approx 100 \text{ J/g}$.

Data: $v_{\text{dispersal}} \approx 10 \text{ m/s for } U \approx 25 \text{ J/g.}$

 $v_{\rm dispersal}$ appears to scale with proton intensity.

The dispersal is not destructive.

Next step: Mercury jet in beam inside 15-T magnetic field.

The Neutrino Horn Issue

- 4 MW proton beams are achieved in BNL, CERN and FNAL scenarios via high rep rates: $\approx 10^6/\text{day}$.
- Classic neutrino horns based on high currents in conductors that intercept much of the secondary pions will have lifetimes of only a few days in this environment.
- Consider instead a solenoid horn with conductors at larger radii than the pions of interest (c.f., Neutrino Factory Design).
- Adiabatic reduction of the solenoid field along the axis,
 - ⇒ Adiabatic reduction of pion transverse momentum,
 - \Rightarrow Focusing.

• No sign selection in horn, \Rightarrow Both ν_u and $\bar{\nu}_m u$, \Rightarrow Detector must measure sign of final-state μ or e.

See, http://pubweb.bnl.gov/users/kahn/www/talks/Homestake.pdf

Liquid Argon the Best Detector to Study $\sin^2 2\theta_{13}$ in the NUMI Beamline

• ≈ 10 times better per kton than water Čerenkov for $\nu_{\mu} \to \nu_{e}$ appearance at 1-2 GeV (Harris).

- Density = 1.4; $X_0 = 14$ cm; can drift electrons 2-4 m.
- 100% sampling tracking and calorimetry.
- Construction is simplest of large neutrino detector options.
- Best rejection of neutral current backgrounds, including soft π^0 's.

ICARUS – a Working Liquid Argon Detector

- Operates at the Earth's surface with near zero overlap of cosmic ray events.
- Operates with deadtimeless, selftriggering electronics.

LANNDD-100 kton Liquid Argon Neutrino and **Nucleon Decay Detector**

- 1- TOP END CAP IRON YOKE
- 2- BOTTOM END CAP IRON YOKE
- 3- BARREL IRON RETURN YOKE
- 4- COIL
- 5- CRYOSTAT
- 6- CATHODES (N° 5)
- 7- WIRE CHAMBERS (N° 4)

LANNDD

Liquid Argon Neutrino and Nucleon Decay Detector

Is a 100-kton Liquid Argon Detector Feasible?

- Use mature, low-cost technology of liquid methane storage tanks (up to 300 kton based on existing structures).
 Preliminary budget estimate from industry of < \$20M for a 100-kton tank, IF built on the SURFACE.
- 100 kton of liquid argon = 10% of USA annual production.
 ⇒ Deliver one trailer-load every 2 hours from Chicago,....
 Only 5 ppm O₂ grade available in large quantities,
 ⇒ On-site liquid-phase purification via Oxisorb (MG).
 Raw material, delivery + purification ⇒ \$0.8M/kton.
- ICARUS electronics from CAEN @ \$100/channel.
 3 mm wire spacing ⇒ 300k ch ⇒ \$30M.
 9 mm wire spacing ⇒ 100k ch ⇒ \$10M.
 High capacity of long wires ⇒ signal may be too weak to use 3 mm spacing.
- With neutrino beam, record every pulse (10⁻³ duty factor).
 Cosmic rays occupy ≈ 10⁻³ of active volume,
 ⇒ ≈ 10 MB data per trigger.
 ⇒ Modest (< \$10M) DAQ/computer system.

200-kton Cryogenic Tanks Used for LNG Storage

	Feet		
Di =	165		
Hi=	117.9803		
LL =	117.7303		
Do =	173		
Ho=	118.0443		

Chicago Bridge & Iron: can build 100-kton LAr tank for < \$20M.

Cryogenic LNG Storage Tanks

Strong Interest by Praxair

Praxair is the leading USA vendor of liquid argon.

The Praxair R&D Lab in Tonawanda, NY is same Union Carbide lab that provided the expertise to build the Oak Ridge gaseous diffusion plant in the 1940's.

LANNDD Cryogenic System

aml:9/2/02-DPB 1

100 kton of Liquid Argon as a Detector for $p \to K^+ \bar{\nu}$

Efficiency for this mode is ≈ 10 times that of water Čerenkov.

This mode favored in many SUSY models.

Can a Proton Decay Search Be Done at the Surface?

- The signature of the decay $p \to K^+ \overline{\nu}$ is particularly clean:
 - $K^+ \to \pi^+ \to \mu^+ \to e^+$.
 - \Rightarrow Maybe "no background" to 10^{35} year even at surface.
- Need 100% duty factor for proton decay search.
 - $\Rightarrow \approx 10 \text{ GB/sec}$ data rate at surface.
- May need to go underground (100 m?) to suppress the data rate.
 - \Rightarrow Additional \$100M to site detector underground.
- Cheaper to buy a big DAQ system and operate at the surface
 - if backgrounds are OK there.

Budget Estimate (Very Rough)

For a 100-kton detector at the surface:

Component	Cost
Liquid argon (industrial grade)	\$70M
Cryo plant, including Oxisorb purifiers	\$10M
Surface site preparation	\$10M
Cryogenic storage tank	\$20M
Electronics (300k channels)	\$30M
Computer systems	\$10M
Subtotal	\$150M
Contingency	\$50M
Total	\$200M
1000	
10 100	4.0
1 10 100 Liquid Argon Fiducial Mass (ktor	10 n)

Next Steps

• 40-ton near detector (1.5-ton fid. mass) in off-axis NUMI beam.

• BNL P-965 to study a liquid argon TPC in a magnetic field.

Should identify sign of e^{\pm} up to ≈ 3 GeV in a 0.5-T field.