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Post-Nobel Opportunities

Data from atmospheric and solar neutrino experiments

= Rich follow-up physics at accelerators and reactors.

Parameter ~ Atmos.  Solar Accel. Reactor (3 Decay
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(ID = Initial Discovery, PM = Precision Measurement)

No evidence for proton decay, “theories” apparently not falsifiable,

= Linkage with neutrino expts. should be driven by the latter.



Off-Axis NuMI Beam (P929)

e 14-mrad off-axis beam, 735 km, = 2-GeV v’s @ 1st oscillation

max for vo-vs.
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e ~ 50 v, CC events/kton in 4-5 year run.

® U /v, ~ 5 X 1073, = Measurement of sin® 26,5 via v, — Ve

limited to ~ 0.01 by backgrounds.

o At this limit, a signal of 10 v, — v, oscillations
= 1000 v, CC events,
= Need (at least) 20 kton detector.

e = Will eventually want bigger detector (2 100 kton) and
hotter beam (0.4 MW — 2 MW).



dcp and Sign of AM3,

e Can untangle dcp from matter effects (sign of AM3;) with

NuMI off-axis beam only if sit close to 1st 2-3 osc max (and if

sin® 2013 2 0.03), = helpful to know AM?Z; better.
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e Some improvement in sensitivity to sign of AM3, if go to larger
distance (and slightly smaller off-axis angle), with little cost in

sensitivity to sin®26;s.

e = Very likely will need 2 generations of detectors (and beams!)

to exploit full potential of off-axis superbeams.



The Neutrino Horn Issue for Superbeams

e 2-4 MW proton beams are achieved in BNL, CERN and FNAL

scenarios via high rep rates: ~ 10°/day.

e Classic neutrino horns based on high currents in conductors
that intercept much of the secondary pions will have lifetimes

of only a few days in this environment.

e Consider instead a solenoid horn with conductors at larger radii

than the pions of interest (c.f., Neutrino Factory Design).

e Adiabatic reduction of the solenoid field along the axis,
= Adiabatic reduction of pion transverse momentum,

= Focusing.

il [ ===
B decreases with z, == P; decreases also
p ﬁ
M

e No sign selection in horn, = Both v, and v,

= Detector must measure sign of final-state u or e.

See, http://pubweb.bnl.gov /users/kahn /www /talks /Homestake.pdf
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Liquid Argon the Best Detector to Study sin®26;; in
the NUMI Beamline

e ~ 10 times better per kton than water Cerenkov for V), — Vg

appearance at 1-2 GeV (Harris).
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e Density = 1.4; Xy = 14 c¢m; can drift electrons 3-5 m.
e 100% sampling tracking and calorimetry.
e Construction is simplest of large neutrino detector options.

e Best rejection of neutral current backgrounds, including soft

Vs,
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Liquid argon time projection chamber
conceived by C. Rubbia (1977).

Largest implementation to date is the
ICARUS T600 (600 ton) module,

on the surface in Pavia, Italy.
http://www.aquila.infn.it /icarus/

ICARUS Liquid

Argon TPC

The LAr TPC technigue is based on the
Jfact that ionization electrons can drift over
large distances (meters) in a volume of
purified liguid Argon under a strong
electric field. If a proper readout system is
realized (i.e. a set of fine pitch wire grids) it
is possible to realize a massive "electronic
bubble chamber" , with superb 3-D
imaging.

Induction wire Signal
A (schematic) Waveform
U ..". : l.‘
s 5
Rt ol R s
andll B Tocak >

-:E : Td"‘i_ﬂ' : ﬁmt-
o
s PMT Signal

View of the inner .cjé?

/4

%f the TPC

7

8 | Wire Chamber

Field'S
(during"'insfcllation)




Liquid Argon TPC Properties

e 3D tracking + total-absorption calorimetry.

e Pixel size: 3 mm x 3 mm (wire planes) x 0.6 mm (via 400 ns time
sampling).

o p=14g/em? T = 89K at 1 atm., Xy = 14 cm, Ay = 80 cm.

e A minimum ionizing particle yields 50,000 e/cm.

e Drift velocity of 1.5 m/msec at 500 V/cm = 5 m drift in 3 msec.
e Diffusion coef. D = 6 ¢cm?/s = ¢ = 1.3 mm after 3 msec.

e Can have only 0.1 ppb of Oy for a 5 m drift,
= Purify with Oxisorb.

e Liquid argon costs $0.7M /kton — and is “stored” not “used”.

e Large modules (2 100 kton) can be built using technology of liquid methane
storage. (Total cost of a 100-kton detector is estimated to be $200M.)

e Detector is continously “live” and can be “self-triggered” using pipelined,
zero-suppression electronics.

e Operates at the Earth’s surface with near zero overlap of
cosmic ray events.

e Detector is compatible with operation in a magnetic field.



Events from the ICARUS T300 Cosmic Ray Test

Induction II

Induction I

Above: 3 views of a
low-energy hadronic
Interaction.

Right: Computer
reconstruction.
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LANNDD - 100 kton Liquid Argon Neutrino and

Nucleon Decay Detector
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Licuid Argon Neutrine and Nucleon Decay Detector

F. Sergiampietri-August 2000
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LANNDD Top View

N°OF WIRE CHAMBERS 4 ACTIVE VOLUME 48'000 m*
WIRE CHAMBER CH1,CH4 W=26.46m H=40m ACTIVE MASS 67 kT
CH2, CH3 W=38.73m H=40m N°OF CATHODE PLANES 5

READOUT PLANES/CHAMBER 4 [2 at +45°, 2 at -45°] MAXIMUM DRIFT 5m
SCREEN-GRID PLANES/CHAMBER 3 MAXIMUM HIGH VOLTAGE 250 kV
N°OF WIRES-CHANNELS/PLANE CH1,CH4 8x15'664=125'312 REQUIRED PURITY LIFETIME 15+20 ms

CH2,CH3  Bx18'557=14B8"455
TOTAL N°OF WIRES-CHANNELS 273767

REUTURN
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e 1200.7 m?
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LANNDD

Ligquid Argon Neutrine and Nucleon Decay Detector
Horizental Cross=-Section

F. Sergiampietri-August 2000

Max drift length of 5 m (limited by O, purity),
= Several drift cells.
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Is a 100-kton Liquid Argon Detector Feasible?

e Use mature, low-cost technology of liquid methane storage
tanks (up to 300 kton based on existing structures).

Preliminary budget estimate from industry of < $20M for a
100-kton tank, IF built on the SURFACE.

e 100 kton of liquid argon = 10% of USA annual production.
= Deliver one trailer-load every 2 hours from Chicago,....
Only 5 ppm O grade available in large quantities,
= On-site liquid-phase purification via Oxisorb (MG).
Raw material, delivery + purification = $0.8M /kton.

e [CARUS electronics from CAEN @ $100/channel.
3 mm wire spacing = 300k ch = $30M.
9 mm wire spacing = 100k ch = $10M.
High capacity of long wires = signal may be too weak to use

3 mm spacing.

e With neutrino beam, record every pulse (1072 duty factor).
Cosmic rays occupy ~ 1072 of active volume,
= = 10 MB data per trigger.
= Modest (< $10M) DAQ/computer system.
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200-kton Cryogenic Tanks Used for LNG Storage
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Chicago Bridge & Iron: can build 100-kton LAr tank for < $20M.
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Strong Interest by Praxair

Praxair is the leading USA vendor of liquid argon.

The Praxair R&D Lab in Tonawanda, NY is same Union Carbide
lab that provided the expertise to build the Oak Ridge gaseous
diffusion plant in the 1940’s.
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Extrapolation to Very Large Modules

Preliminary cost estimate for a liquid argon detector of 100 kton total mass.

Component Scaling  Cost
Liquid argon (industrial grade) M $70M
Cryo plant, including Oxisorb purifiers M $10M
Surface site preparation M2 $10M
Cryogenic storage tank M?3 $20M
Electronics (300k channels) M?3 $30M
Computer systems M?3 $10M
Subtotal $150M
Contingency $50M
Total $200M

Fiducial mass is for v, appearance events =- contain EM showers.
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Preliminary Cost Comparison

Scaling the liquid argon detector cost estimate,

= $53M for 20 kton total mass.

Cost estimates for a 20-kton “particle-board” detector:

e 20 m x20 m x 160 layers of 30 cm each (50 m deep).

e (4,000 m? of readout; 512,000 ch on 2.5 cm pitch.

e Readout costs based on a recent BaBar evaluation.

Component RPC Iarocci Scintillator
Particle board $5M  $5M $5M
Mech. Assem. $5M  $5M $5M
Detector Cost/m? $350  $500 $300
Detector Cost $22M  $32M $19M
Cost/Readout Ch $25 $25 $90
Readout Cost $13M  $13M $46M
Subtotal $45M  $55M $75M

Total w/25% Contingency $56M $69M $93M
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Next Steps

e 40-ton near detector (1.5-ton fid. mass) in off-axis NUMI beam.
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e Add Chicago Cyclotron Magnet coils to give B ~ 1 T over

downstream (or upstream) 2/3 of detector.
Chicago Cyclotron Magnet coilF—__
- A

o 3

Y

I

= 10° CC v, ineractions/year.
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R&D (see NuMI-PUB-GEN-0880)

e Liquid-phase purification of industrial grade argon via Oxisorb

or equivalent (Praxair).
e Mechanics and electronics of wires up to 60-m long.

e Cryogenic feedthroughs, possibly including buffer volume at
150K for low-noise FET"s.

e Verification of operation of a liquid argon TPC at 10 atmospheres

(as at bottom of a 100-kton tank).

2.5GeV/c et simulation@E=1T

e Study of liquid argon TPC in a magnetic field (BNL P-965).

< 5

Special features

a) Primary e* momentum —> curvature radius obtained
by the calorimetric energy measurement

b) In case of initial soft bremsstrahlung ¥’s, the primary
¢ remembers its original direction — long effective x
for bending

c) With initial hard bremsstrahlung y's — reduced
primary e * energy — low P —s small curvature radius

A. Bueno, M anelli, A Rubbia, I escopes”, VENICE, 2001

Should identify sign of e* up to ~ 3 Gev in a 0.5-T field.
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Appendix: Measuring a Muon’s Sign in a
Magnetized Liquid Argon TPC

In a strong magnetic field, momentum resolution (and sign discrimination) is
limited by detector resolution.

But in a weak magnetic field, multiple scattering is the limit.

For example, if have 3-m track length (= 20 X = fiducial length for an elec-
tromagnetic shower), then have 3-¢ sign discrimination for all muon momenta

below 100 GeV/c in a field of 0.1 T.

\
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0.01
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Above left: Minimum magnetic field vs. track length required to discriminate between

positive and negative curvatures at 3-0. Dashed curves: contribution of the detector
resolution at momenta 1, 2, 5, 10, 20 and 50 GeV/c. Dotted curve: contribution of the
multiple scattering in the range 1-50 GeV/c. Solid thick curves: combined contribution
of detector resolution and multiple scattering in the range 1-50 GeV /c.

Above right: Momentum resolution vs. magnetic field for muons crossing 20 X in liquid
Argon. Dashed curves: contribution of the detector resolution at momenta 1, 2, 5,
10, 20 and 50 GeV/c. Circles: contribution of the multiple scattering independent of
momentum. Solid thick curve: combined contribution of detector resolution and multiple
scattering in the range 1-50 GeV/c.
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Appendix: Measuring an Electron’s Sign in a Magnetized
Liquid Argon TPC

Because electrons “shower”, the useful track length for sign discrimination is
limited to ~ 2Xy ~ 30 cm.

2.5GeV/c e simulation@ E=1T

i ¥y 7 4 Special features

o + 2 z
@) Primary e~ momentum — curvature radius obtained
by the calorimetric energy measurement

b) In case of initial soft bremsstrahlung y’s, the primary
e* remembers its original direction — long effective x
for bending

c) With mitial hard bremsstrahlung y’s — reduced
primary e * energy — low P - small curvature radius

es”; \'NI(:E, 2001

A, Bueno, M. Campanelli, A Rubb

[F have 30 cm of useful track length, can get 99.9% accurate sign discrimination

up to 5 GeV in a 1-T magnetic field.
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But, shower fluctuations can reduce the accuracy of the sign determination.

= Need for experimental study!
(GEANT simulations not yet performed — but will not truly settle the issue.]
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Appendix: Off-Axis Detector Sites in the NuMI Access Shaft
[Steve Manly: http://nuint.ps.uci.edu/slides/Manly.pdf]
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