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Post-Nobel Opportunities

Data from atmospheric and solar neutrino experiments

⇒ Rich follow-up physics at accelerators and reactors.

Parameter Atmos. Solar Accel. Reactor β Decay
∣∣∣∣∆M 2

23

∣∣∣∣ ID PM

θ23 ID PM
∣∣∣∣∆M 2

12

∣∣∣∣ ID PM PM

Sign(∆M 2
12) ID = PM

θ12 ID PM PM

νsterile ID, PM

Sign(∆M 2
23) ID = PM ID = PM

θ13 ID, PM ID

∆CP ID, PM

Mν ID

(ID = Initial Discovery, PM = Precision Measurement)

No evidence for proton decay, “theories” apparently not falsifiable,

⇒ Linkage with neutrino expts. should be driven by the latter.
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Off-Axis NuMI Beam (P929)

• 14-mrad off-axis beam, 735 km, ⇒ 2-GeV ν’s @ 1st oscillation

max for ν2-ν3.
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• ≈ 50 νµ CC events/kton in 4-5 year run.

• νe/νµ ≈ 5× 10−3,⇒ Measurement of sin2 2θ13 via νµ → νe

limited to ≈ 0.01 by backgrounds.

• At this limit, a signal of 10 νµ → νe oscillations

⇒ 1000 νµ CC events,

⇒ Need (at least) 20 kton detector.

• ⇒ Will eventually want bigger detector (>∼ 100 kton) and

hotter beam (0.4 MW → 2 MW).
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δCP and Sign of ∆M 2
23

• Can untangle δCP from matter effects (sign of ∆M 2
23) with

NuMI off-axis beam only if sit close to 1st 2-3 osc max (and if

sin2 2θ13
>∼ 0.03), ⇒ helpful to know ∆M 2

23 better.

• Some improvement in sensitivity to sign of ∆M 2
23 if go to larger

distance (and slightly smaller off-axis angle), with little cost in

sensitivity to sin2 2θ13.

• ⇒ Very likely will need 2 generations of detectors (and beams!)

to exploit full potential of off-axis superbeams.
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The Neutrino Horn Issue for Superbeams

• 2-4 MW proton beams are achieved in BNL, CERN and FNAL

scenarios via high rep rates: ≈ 106/day.

• Classic neutrino horns based on high currents in conductors

that intercept much of the secondary pions will have lifetimes

of only a few days in this environment.

• Consider instead a solenoid horn with conductors at larger radii

than the pions of interest (c.f., Neutrino Factory Design).

• Adiabatic reduction of the solenoid field along the axis,

⇒ Adiabatic reduction of pion transverse momentum,

⇒ Focusing.

• No sign selection in horn, ⇒ Both νu and ν̄µ,

⇒ Detector must measure sign of final-state µ or e.

See, http://pubweb.bnl.gov/users/kahn/www/talks/Homestake.pdf
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Liquid Argon the Best Detector to Study sin2 2θ13 in

the NUMI Beamline

• ≈ 10 times better per kton than water Čerenkov for νµ → νe

appearance at 1-2 GeV (Harris).

• Density = 1.4; X0 = 14 cm; can drift electrons 3-5 m.

• 100% sampling tracking and calorimetry.

• Construction is simplest of large neutrino detector options.

• Best rejection of neutral current backgrounds, including soft

π0’s.
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Liquid argon time projection chamber

conceived by C. Rubbia (1977).

Largest implementation to date is the

ICARUS T600 (600 ton) module,

on the surface in Pavia, Italy.

http://www.aquila.infn.it/icarus/
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Liquid Argon TPC Properties

• 3D tracking + total-absorption calorimetry.

• Pixel size: 3 mm × 3 mm (wire planes) × 0.6 mm (via 400 ns time

sampling).

• ρ = 1.4 g/cm3, T = 89K at 1 atm., X0 = 14 cm, λint = 80 cm.

• A minimum ionizing particle yields 50,000 e/cm.

• Drift velocity of 1.5 m/msec at 500 V/cm ⇒ 5 m drift in 3 msec.

• Diffusion coef. D = 6 cm2/s ⇒ σ = 1.3 mm after 3 msec.

• Can have only 0.1 ppb of O2 for a 5 m drift,

⇒ Purify with Oxisorb.

• Liquid argon costs $0.7M/kton – and is “stored” not “used”.

• Large modules (>∼ 100 kton) can be built using technology of liquid methane

storage. (Total cost of a 100-kton detector is estimated to be $200M.)

• Detector is continously “live” and can be “self-triggered” using pipelined,

zero-suppression electronics.

• Operates at the Earth’s surface with near zero overlap of

cosmic ray events.

• Detector is compatible with operation in a magnetic field.
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Events from the ICARUS T300 Cosmic Ray Test

Above: 3 views of a
low-energy hadronic
interaction.
Right: Computer
reconstruction.

Below: Cosmic ray
shower that includes
a muon with a δ-
ray, a stopping muon,
and an electromag-
netic shower.
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LANNDD – 100 kton Liquid Argon Neutrino and

Nucleon Decay Detector
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LANNDD Top View

 

Max drift length of 5 m (limited by O2 purity),

⇒ Several drift cells.
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Is a 100-kton Liquid Argon Detector Feasible?

• Use mature, low-cost technology of liquid methane storage

tanks (up to 300 kton based on existing structures).

Preliminary budget estimate from industry of < $20M for a

100-kton tank, IF built on the SURFACE.

• 100 kton of liquid argon = 10% of USA annual production.

⇒ Deliver one trailer-load every 2 hours from Chicago,....

Only 5 ppm O2 grade available in large quantities,

⇒ On-site liquid-phase purification via Oxisorb (MG).

Raw material, delivery + purification ⇒ $0.8M/kton.

• ICARUS electronics from CAEN @ $100/channel.

3 mm wire spacing ⇒ 300k ch ⇒ $30M.

9 mm wire spacing ⇒ 100k ch ⇒ $10M.

High capacity of long wires ⇒ signal may be too weak to use

3 mm spacing.

• With neutrino beam, record every pulse (10−3 duty factor).

Cosmic rays occupy ≈ 10−3 of active volume,

⇒ ≈ 10 MB data per trigger.

⇒ Modest (< $10M) DAQ/computer system.
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200-kton Cryogenic Tanks Used for LNG Storage

Chicago Bridge & Iron: can build 100-kton LAr tank for < $20M.
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Strong Interest by Praxair

Praxair is the leading USA vendor of liquid argon.

The Praxair R&D Lab in Tonawanda, NY is same Union Carbide

lab that provided the expertise to build the Oak Ridge gaseous

diffusion plant in the 1940’s.
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Extrapolation to Very Large Modules

Preliminary cost estimate for a liquid argon detector of 100 kton total mass.

Component Scaling Cost

Liquid argon (industrial grade) M $70M

Cryo plant, including Oxisorb purifiers M $10M

Surface site preparation M 2/3 $10M

Cryogenic storage tank M 2/3 $20M

Electronics (300k channels) M 2/3 $30M

Computer systems M 2/3 $10M

Subtotal $150M

Contingency $50M

Total $200M

Fiducial mass is for νe appearance events ⇒ contain EM showers.
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Cost scaling = 1.33 [$80M (M/100 kton) + $70M (M/100 kton)2/3].
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Preliminary Cost Comparison

Scaling the liquid argon detector cost estimate,

⇒ $53M for 20 kton total mass.

Cost estimates for a 20-kton “particle-board” detector:

• 20 m ×20 m × 160 layers of 30 cm each (50 m deep).

• 64,000 m2 of readout; 512,000 ch on 2.5 cm pitch.

• Readout costs based on a recent BaBar evaluation.

Component RPC Iarocci Scintillator

Particle board $5M $5M $5M

Mech. Assem. $5M $5M $5M

Detector Cost/m2 $350 $500 $300

Detector Cost $22M $32M $19M

Cost/Readout Ch $25 $25 $90

Readout Cost $13M $13M $46M

Subtotal $45M $55M $75M

Total w/25% Contingency $56M $69M $93M
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Next Steps

• 40-ton near detector (1.5-ton fid. mass) in off-axis NUMI beam.

• Add Chicago Cyclotron Magnet coils to give B ≈ 1 T over

downstream (or upstream) 2/3 of detector.

⇒ 105 CC νµ ineractions/year.

17



R&D (see NuMI-PUB-GEN-0880)

• Liquid-phase purification of industrial grade argon via Oxisorb

or equivalent (Praxair).

• Mechanics and electronics of wires up to 60-m long.

• Cryogenic feedthroughs, possibly including buffer volume at

150K for low-noise FET’s.

• Verification of operation of a liquid argon TPC at 10 atmospheres

(as at bottom of a 100-kton tank).

• Study of liquid argon TPC in a magnetic field (BNL P-965).

Should identify sign of e± up to ≈ 3 Gev in a 0.5-T field.
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Appendix: Measuring a Muon’s Sign in a

Magnetized Liquid Argon TPC

In a strong magnetic field, momentum resolution (and sign discrimination) is

limited by detector resolution.

But in a weak magnetic field, multiple scattering is the limit.

For example, if have 3-m track length (= 20 X0 = fiducial length for an elec-

tromagnetic shower), then have 3-σ sign discrimination for all muon momenta

below 100 GeV/c in a field of 0.1 T.
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Above left: Minimum magnetic field vs. track length required to discriminate between
positive and negative curvatures at 3-σ. Dashed curves: contribution of the detector
resolution at momenta 1, 2, 5, 10, 20 and 50 GeV/c. Dotted curve: contribution of the
multiple scattering in the range 1-50 GeV/c. Solid thick curves: combined contribution
of detector resolution and multiple scattering in the range 1-50 GeV/c.

Above right: Momentum resolution vs. magnetic field for muons crossing 20 X0 in liquid
Argon. Dashed curves: contribution of the detector resolution at momenta 1, 2, 5,
10, 20 and 50 GeV/c. Circles: contribution of the multiple scattering independent of
momentum. Solid thick curve: combined contribution of detector resolution and multiple
scattering in the range 1-50 GeV/c.
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Appendix: Measuring an Electron’s Sign in a Magnetized

Liquid Argon TPC

Because electrons “shower”, the useful track length for sign discrimination is

limited to ≈ 2X0 ≈ 30 cm.

IF have 30 cm of useful track length, can get 99.9% accurate sign discrimination

up to 5 GeV in a 1-T magnetic field.

But, shower fluctuations can reduce the accuracy of the sign determination.

⇒ Need for experimental study!

[GEANT simulations not yet performed – but will not truly settle the issue.]
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Appendix: Off-Axis Detector Sites in the NuMI Access Shaft

[Steve Manly: http://nuint.ps.uci.edu/slides/Manly.pdf]
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