

From a Neutrino Factory to Carlsbad

Kirk T. McDonald

Princeton U.

mcdonald@puphep.princeton.edu

Workshop on the Next Generation U.S. Underground Science Facility

Carlsbad, NM, June 13, 2000

http://puhep1.princeton.edu/~mcdonald/nufact/

The Opportunity for a Neutrino Factory

- Recent evidence for neutrino mass and oscillation among neutrino types is literally a gift from the heavens.
- Systematic exploration of the physics of massive neutrino is possible using accelerator sources of neutrinos and large underground detectors separated by long baselines.
- The WIPP underground science facility is well sized and well located to host a large detector for neutrinos from a neutrino factory.

The neutrino detector must be able to distinguish the sign of the muon from the reaction $\nu + N \to \mu + X$.

Oscillations of Massive Neutrinos

Neutrinos could have a small mass (Pauli, Fermi, Majorana, 1930's).

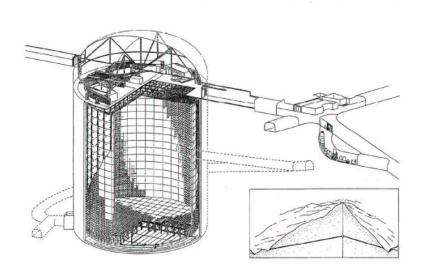
Massive neutrinos can mix (Pontecorvo, 1957).

In the example of only two massive neutrinos (that don't decay), with mass eigenstates ν_1 and ν_2 with mass difference Δm and mixing angle θ , the flavor eigenstates ν_a and ν_b are related by

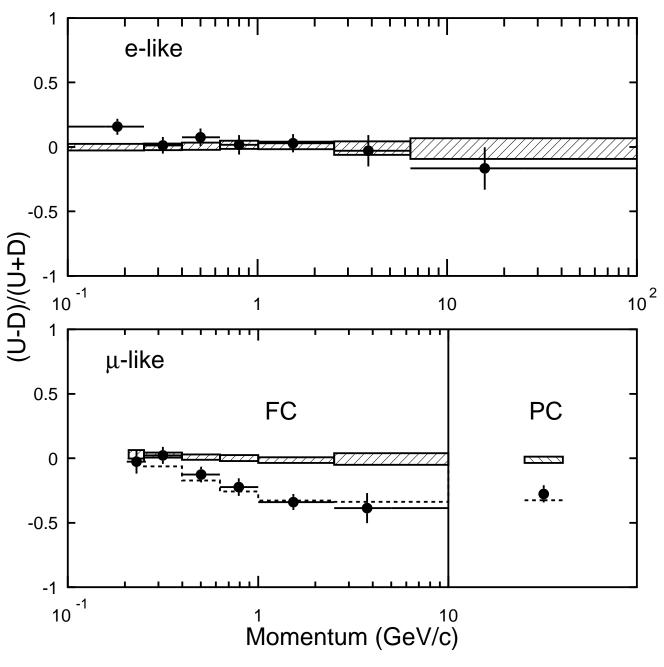
$$\begin{pmatrix} \nu_a \\ \nu_b \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}.$$

The probability that a neutrino of flavor ν_a and energy E appears as flavor ν_b after traversing distance L in vacuum is

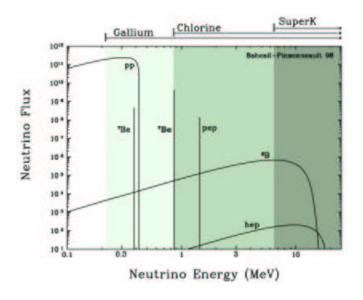
$$P(\nu_a \to \nu_b) = \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta m^2 [\text{eV}^2] \ L[\text{km}]}{E[\text{GeV}]} \right).$$

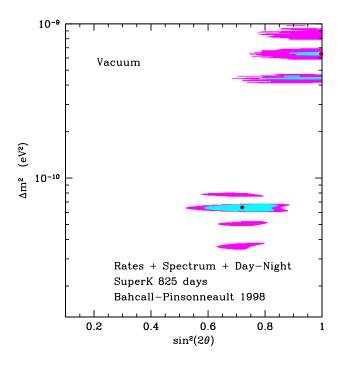

The probability that ν_a does not disappear is

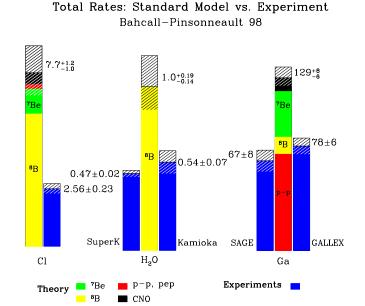
$$P(\nu_a \to \nu_a) = \cos^2 2\theta \sin^2 \left(\frac{1.27\Delta m^2 [\text{eV}^2] L[\text{km}]}{E[\text{GeV}]} \right).$$

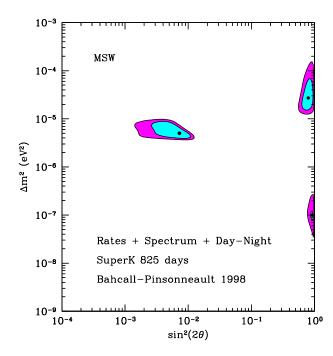

A Sketch of Current Data

• The Atmospheric Neutrino "Anomaly" suggests that GeV ν_{μ} 's (from $p+N_2 \to \pi \to \mu \nu_{\mu}$) disappear while traversing the Earth's diameter, $\Rightarrow \Delta m^2 \approx 10^{-3} \; (\text{eV})^2 \; \text{for sin}^2 \; 2\theta \approx 1$. (Kamiokande, IMB, Soudan-2, MACRO, Super-Kamiokande)

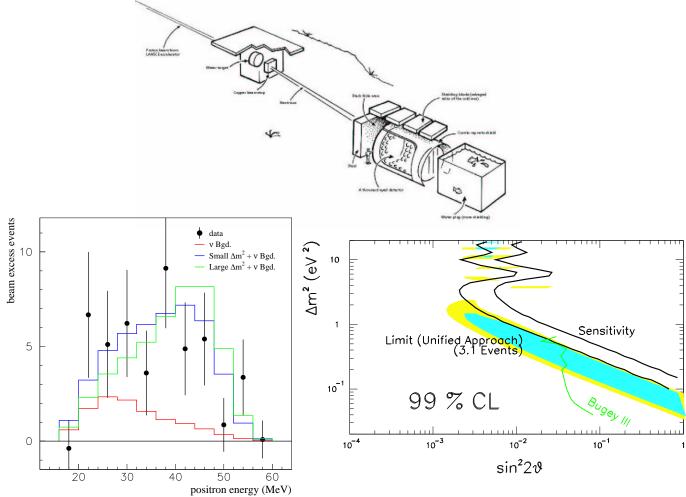





KIRK T. McDonald June 13, 2000 5



• The Solar Neutrino "Deficit" suggests that MeV ν_e 's disappear between the center of the Sun and the Earth. $\Rightarrow \Delta m^2 \approx 10^{-10} \, (\text{eV})^2 \, \text{for } \sin^2 2\theta \approx 1, \, \text{if vacuum oscillations.}$ (Homestake, Super-Kamiokande, GALLEX, SAGE)



The **LSND Experiment** suggests that 30-MeV $\overline{\nu}_{\mu}$'s (from $p + H_2O \rightarrow \pi^- \rightarrow \mu^- \overline{\nu}_{\mu}$) appear as $\overline{\nu}_e$'s after 30 m. $\Rightarrow \Delta m^2 \approx 1 \text{ (eV)}^2$, but reactor data requires $\sin^2 2\theta \lesssim 0.03$.

- The atmospheric neutrino anomaly + the solar neutrino deficit (if both correct) require at least 3 massive neutrinos.
- If LSND is correct as well, need at least 4 massive neutrinos.
- The measured width of the Z^0 boson (LEP) \Rightarrow only 3 Standard Model neutrinos. A 4th massive neutrino must be "sterile".

KIRK T. McDonald June 13, 2000

Mixing of Three Neutrinos

$$\begin{pmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix},$$

where $c_{12} = \cos \theta_{12}$, etc. (Maki, Nakagawa, Sakata, 1962).

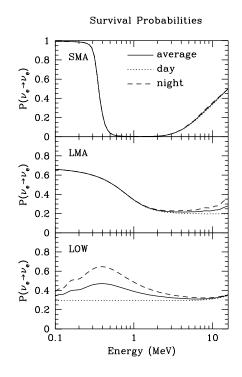
Three massive neutrinos \Rightarrow six independent parameters:

- Three mixing angles: θ_{12} , θ_{13} , θ_{23} ,
- A phase δ related to CP violation,
- Two differences of the squares of the neutrino masses. Ex: $\Delta m_{12}^2 = \Delta m^2 (\text{solar})$ and $\Delta m_{23}^2 = \Delta m^2 (\text{atmospheric})$.
- $[J_{CP} = s_{12}s_{23}s_{31}c_{12}c_{23}c_{31}^2s_{\delta} = Jarlskog invariant.]$

Measurement of these parameters is a primary goal of experimental neutrino physics.

If four massive neutrinos, then 6 mixing angles, 3 phases, 3 independent squares of mass differences.

Matter Effects


 ν_e 's can interact with electrons via both W and Z^0 exchanges, but other neutrinos can only interact with e's via Z^0 exchange.

$$\Rightarrow \sin^2 2\theta_{\text{matter}} = \frac{\sin^2 2\theta_{\text{vac}}}{\sin^2 2\theta_{\text{vac}} + (\cos 2\theta_{\text{vac}} - A)^2},$$

where $A = 2\sqrt{2}G_F N_e E/\Delta m^2$ depends on sign of Δm^2 .

At the "resonance", $\cos 2\theta_{\text{vac}} = A$, $\sin^2 2\theta_{\text{matter}} = 1$ even if $\sin^2 2\theta_{\text{vac}}$ is small (Wolfenstein, 1978, Mikheyev, Smirnov, 1986).

\Rightarrow 3 MSW solutions to the solar neutrino problem:

In all of these MSW solutions, $\Delta m_{\rm solar}^2 = \Delta m_{12}^2 > 0$.

Too Many Solutions

There are 8 scenarios suggested by present data:

- Either 3 or 4 massive neutrinos.
- Four solutions to the solar neutrino problem:
 - 1. Vacuum oscillation (VO, or "Just So") solution; $\Delta m_{12}^2 \approx (0.5 5.0) \times 10^{-10} \text{ eV}^2, \sin^2 2\theta_{12} \approx (0.7 1.0).$
 - 2. Low MSW solution;

$$\Delta m_{12}^2 \approx (0.5 - 2.0) \times 10^{-7} \text{ eV}^2, \sin^2 2\theta_{12} \approx (0.9 - 1.0).$$

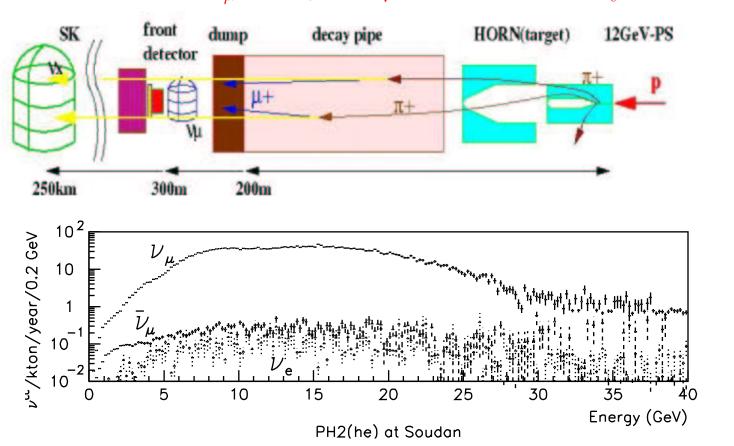
3. Small mixing angle (SMA) MSW solution;

$$\Delta m_{12}^2 \approx (4.0 - 9.0) \times 10^{-6} \text{ eV}^2, \sin^2 2\theta_{12} \approx (0.001 - 0.01).$$

4. Large mixing angle (LMA) MSW solution;

$$\Delta m_{12}^2 \approx (0.2 - 2.0) \times 10^{-4} \text{ eV}^2, \sin^2 \theta_{12} \approx (0.65 - 0.96).$$

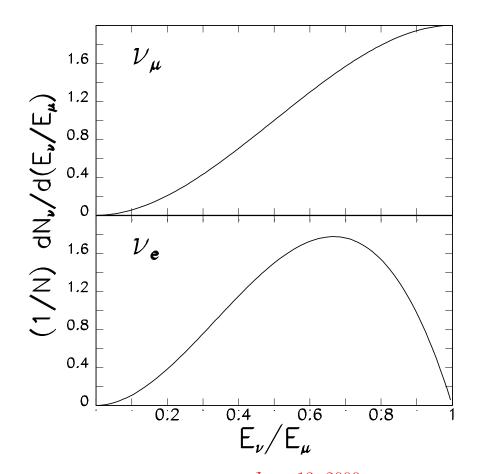
- Atmospheric neutrino data $\Rightarrow \Delta m_{23}^2 \approx (3-5) \times 10^{-4} \text{ eV}^2$, $\sin^2 \theta_{12} > 0.8$.
- θ_{13} very poorly known ($\sin^2 2\theta_{13} \lesssim 0.2$).
- δ completely unknown.


The Next Generation of Neutrino Experiments

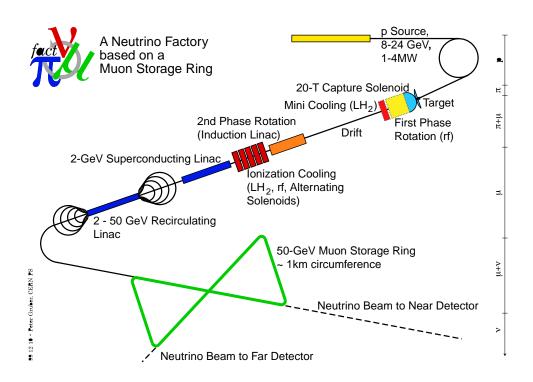
- Short baseline accelerator experiments (miniBoone, ORLAND, CERN) will likely clarify the LSND result.
- Super-Kamiokande + new long baseline accelerator experiments (K2K, Minos, NGS) will firm up measurements of θ_{23} and Δm_{23}^2 , but will provide little information on θ_{13} and δ .
- New solar neutrino experiments (BOREXino, SNO, HELLAZ, HERON,) will explore different portions of the energy spectrum, and clarify possible pathlength-dependent effects.
 SNO should provide independent confirmation of neutrino oscillations via comparison of reactions
 ν+²H → ρ + ρ + e and ν+²H → ρ + n + ν.
- Each of these experiments studies oscillations of only a single pair of neutrinos.
- The continued search for the neutrinoless double-beta decay $^{78}\text{Ge} \rightarrow ^{78}\text{Se} + 2e^-$ will improve the mass limits on Majorana neutrinos to perhaps as low as 0.01 eV (GENIUS).

The Opportunity for a Neutrino Factory

- Many of the neutrino oscillation solutions permit study of the couplings between 2, 3, and 4 neutrinos in accelerator based experiments.
- More neutrinos are needed!
- Present neutrino beams come from $\pi, K \to \mu\nu_{\mu}$ with small admixtures of $\overline{\nu}_{\mu}$ and ν_{e} from μ and $K \to 3\pi$ decays.



• Cleaner spectra and comparable fluxes of ν_e and ν_μ desirable.



A Neutrino Factory based on a Muon Storage Ring

- Higher (per proton beam power) and better characterized, neutrino fluxes are obtained from μ decay.
- Collect low-energy μ 's from π decay, Cool the muon bunch, Accelerate the μ 's to the desired energy, Store them in a ring while they decay via $\mu^- \to e^- \nu_\mu \overline{\nu}_e$. [Of course, can use μ^+ also.]

THE NEUTRINO FACTORY AND MUON COLLIDER COLLABORATION

6 Classes of Experiments at a Neutrino Factory

$$\nu_{\mu} \to \nu_{e} \to e^{-}$$
 (appearance), (1)

$$\nu_{\mu} \to \nu_{\mu} \to \mu^{-}$$
 (disappearance), (2)

$$\nu_{\mu} \to \nu_{\tau} \to \tau^{-}$$
 (appearance), (3)

$$\overline{\nu}_e \to \overline{\nu}_e \to e^+$$
 (disappearance), (4)

$$\overline{\nu}_e \to \overline{\nu}_\mu \to \mu^+$$
 (appearance), (5)

$$\overline{\nu}_e \to \overline{\nu}_\tau \to \tau^+$$
 (appearance). (6)

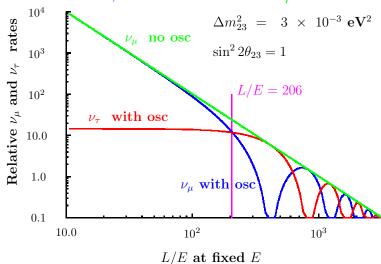
[Plus 6 corresponding processes for $\overline{\nu}_{\mu}$ from μ^{+} decay.]

Processes (2) and (5) are easiest to detect, via the final state μ .

Process (5) is noteworthy for having a "wrong-sign" μ .

Processes (3) and (6) with a final state τ require μ 's of 10's of GeV.

Processes (1) and (4) with a final state electron are difficult to distinguish.


Magnetic detectors of 10's of kilotons will be required, with fine segmentation if τ 's are to be measured.

Scaling Laws for Rates at a Neutrino Factory

 $\sigma_{\nu} \propto E$; $I_{\nu} \propto 1/(\theta)^2 \propto (E/L)^2$: Rate $\propto I_{\nu}\sigma_{\nu} \propto E^3/L^2$.

 \Rightarrow Rate $\propto E^3$ at fixed L, Rate $\propto 1/L^2$ at fixed E.

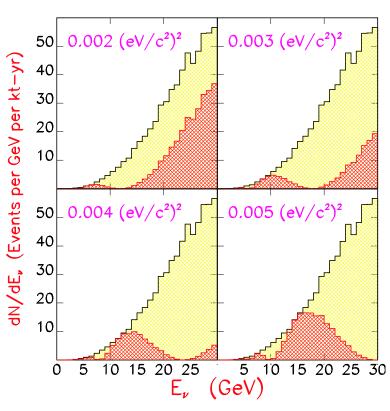
Neutrino oscillation probability varies with L/E,

 \Rightarrow Rate $\propto E$ for fixed L/E.

 τ appearance suppressed at low energy. Larger $E \Rightarrow \text{larger } L$.

The Rates are High at a Neutrino Factory

Charged current event rates per kton-yr.


(L = 732 km)	$ u_{\mu}$	$\overline{ u}_e$
Neutrino Factory	$(2 \times 10^{20}$	$ u_{\mu}/\mathrm{yr})$
10 GeV	2200	1300
20 GeV	18,000	11,000
50 GeV	2.9×10^5	1.8×10^{5}
250 GeV	3.6×10^7	2.3×10^7
MINOS (WBB)		
Low energy	460	1.3
Medium energy	1440	0.9
High energy	3200	0.9

Even a low-energy neutrino factory has high rates of electron neutrino interactions.

A neutrino factory with $E_{\mu} \gtrsim 20$ GeV is competitive for muon neutrino interactions.

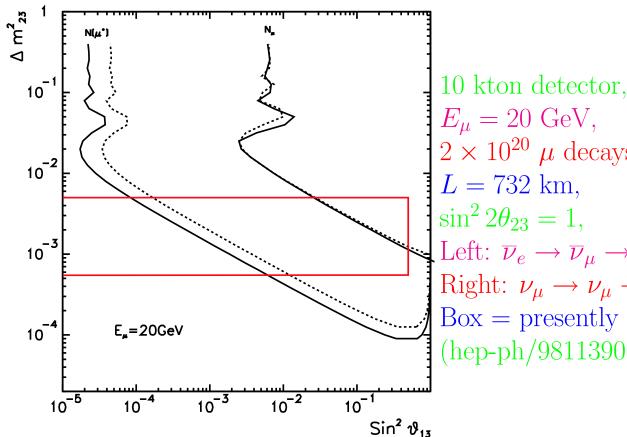
$\nu_{\mu} \rightarrow \nu_{\mu} \rightarrow \mu^{-}$ Disappearance

 $E_{\mu} = 30 \text{ GeV},$ $2 \times 10^{20} \mu \text{ decays},$ L = 7000 km, $\sin^2 2\theta_{23} = 1.$ (hep-ph/9906487)

Δm_{23}^2	Events	
(eV^2)	(per 10 kt-yr)	
0.002	2800	
0.003	1200	
0.004	900	
0.005	1700	
No Osc.	6200	

$\nu_{\mu} \rightarrow \nu_{\tau} \rightarrow \tau^{-}$ Appearance

$\Delta m_{23}^2 \over (\text{eV}^2)$	Events (per 10 kton-yr)	-
0.002	1200	For conditions as above.
0.003	1900	
0.004	2000	
0.005	1800	_

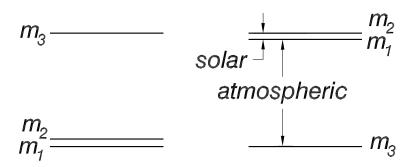

Measuring θ_{13}

Many ways:

$$P(\overline{\nu}_e \to \overline{\nu}_\mu) = \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 \frac{1.27 \Delta m_{23}^2 L}{E_\nu},$$

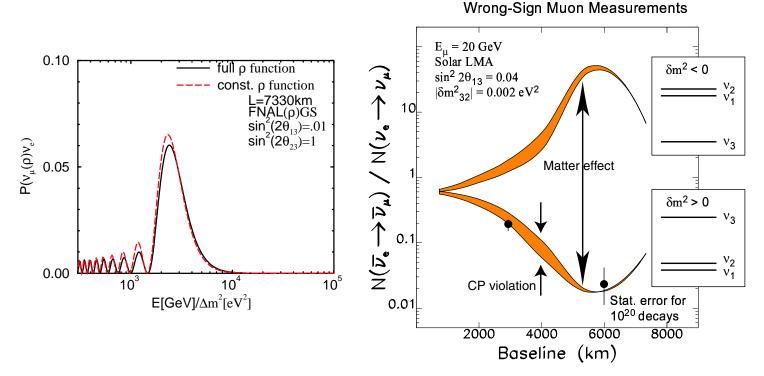
$$P(\overline{\nu}_e \to \overline{\nu}_\tau) = \sin^2 2\theta_{13} \cos^2 \theta_{23} \sin^2 \frac{1.27 \Delta m_{23}^2 L}{E_\nu},$$

$$P(\nu_\mu \to \nu_\tau) = \cos^4 \theta_{13} \sin^2 2\theta_{23} \sin^2 \frac{1.27 \Delta m_{23}^2 L}{E_\nu}.$$



 $E_{\mu} = 20 \text{ GeV},$ $2 \times 10^{20} \mu \text{ decays},$ L = 732 km, $\sin^2 2\theta_{23} = 1$, Left: $\overline{\nu}_e \to \overline{\nu}_\mu \to \mu^+$, Right: $\nu_{\mu} \rightarrow \nu_{\mu} \rightarrow \mu^{-}$, Box = presently allowed.(hep-ph/9811390).

19 KIRK T. McDonald June 13, 2000



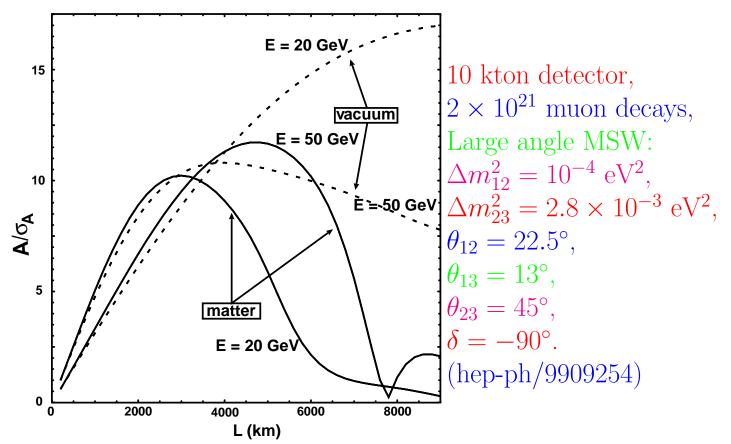
Measuring the Sign of Δm_{23}^2 via Matter Effects

The matter-effect resonance depends on the sign of Δm_{23}^2 (p. 8).

Crisper to observe $\overline{\nu}_e \to \overline{\nu}_\mu$ appearance than ν_μ disappearance.

Baseline of 5000-7000 km needed to build up the matter effect for measurement of Δm_{23}^2 .

[Measurement of CP violation more favorable at 3000 km.]


Measuring δ via CP Violation

The phase δ is accessible to terrestrial experiment in the large mixing angle (LMA) solution to the solar neutrino problem (or if there are 4 massive neutrinos).

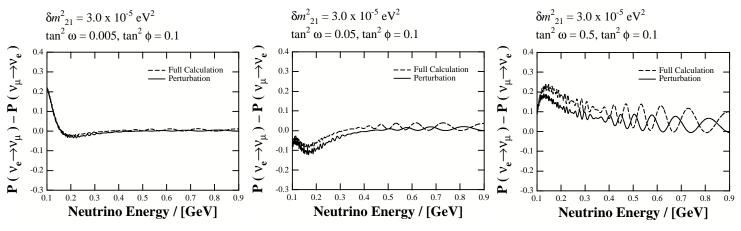
CP violation:

$$A_{\rm CP} = \frac{P(\nu_e \to \nu_\mu) - P(\overline{\nu}_e \to \overline{\nu}_\mu)}{P(\nu_e \to \nu_\mu) + P(\overline{\nu}_e \to \overline{\nu}_\mu)} \approx \left| \frac{2\sin \delta}{\sin 2\theta_{13}} \sin \frac{1.27 \Delta m_{12}^2 L}{E} \right|,$$

assuming $\sin^2 2\theta_{12} \approx \sin^2 2\theta_{23} \approx 1$ (LMA).

Matter effects dominate the asymmetry for L > 1000 km. KIRK T. McDonald

June 13, 2000 21


Measuring δ via T Violation

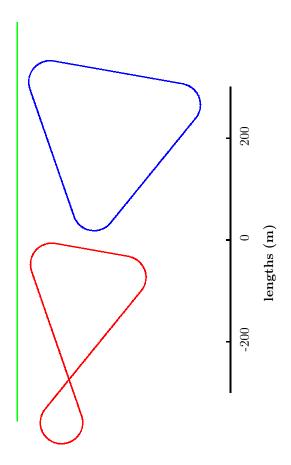
If the small mixing angle (SMA) solutions holds, may still be able to measure δ via T violation:

$$P(\nu_e \to \nu_\mu) - P(\nu_\mu \to \nu_e) = 4J_{\text{CP}} \sin \frac{1.27\Delta m_{12}^2 L}{E} \sin \frac{1.27\Delta m_{13}^2 L}{E} \sin \frac{1.27\Delta m_{23}^2 L}{E},$$

 $8J_{\rm CP} = \cos\theta_{13}\sin 2\theta_{13}\sin 2\theta_{12}\sin 2\theta_{23}\sin \delta = \text{Jarlskog invariant}.$

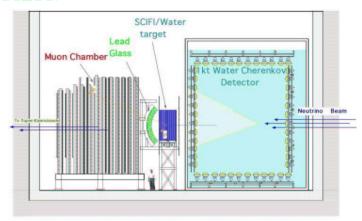
Matter effects could make $\sin 2\theta_{12}$ resonate for $E \approx 100$ MeV and $L \approx 10,000$ km (hep-ph/9911258).

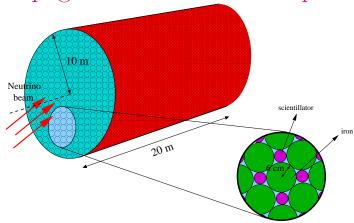
However, not easy to measure $\nu_{\mu} \to \nu_{e} \to e^{-}$ (appearance) against background of $\overline{\nu}_{e} \to \overline{\nu}_{e} \to e^{+}$ in a large, massive detector in which the electrons shower immediately. [Rates low also.]



A Neutrino Factory is a Global Facility

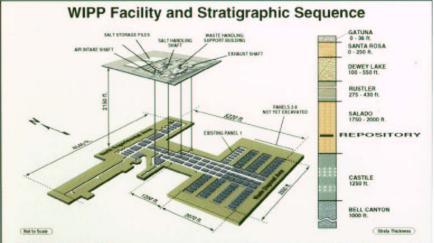
- Host lab with the muon storage ring and near detector.
- Could have two larger detectors located elsewhere, possibly one on the same, and the second on another continent.
- For this, the muon storage ring needs 3 straight sections, and would not lie in a horizontal plane.



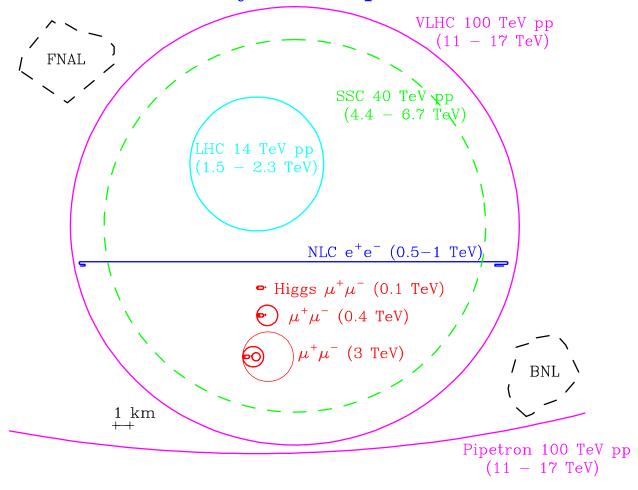


Large Underground Detectors

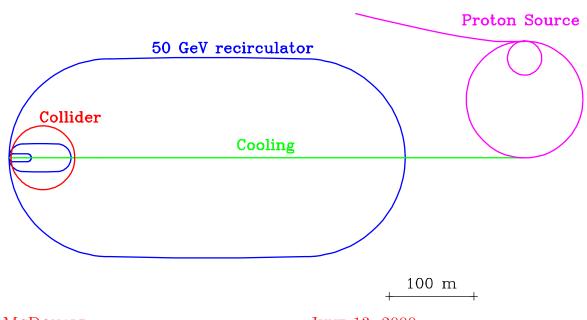
K2K:


"Spaghetti" detector concept:

Gran Sasso in Italy:

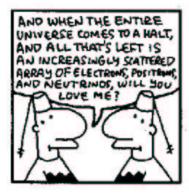


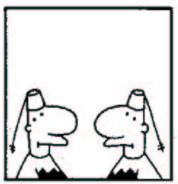
DOE WIPP facility in New Mexico:



A Neutrino Factory is a Step to a Muon Collider

A First Muon Collider to study light-Higgs production:




Summary

- The physics program of a neutrino factory/muon collider is extremely diverse, and of scope to justify an international laboratory.
- The first step is a **neutrino factory** capable of systematic exploration of neutrino oscillations.
 - With $\gtrsim 10^{20}~\nu$'s/year can go well beyond other existing or planned accelerator experiments.
 - Beams with $E_{\nu_e} \lesssim 1 \text{ GeV}$ are already very interesting.
 - Higher energy is favored: Rate $\propto E$ at fixed L/E; ν_{τ} appearance practical only for $E \gtrsim 30$ GeV.
 - Detectors at multiple distances needed for broad coverage
 of parameter space ⇒ triangle or "bowtie" storage rings.
 - CP and T violation accessible with $\gtrsim 10^{21} \ \nu$'s/year.
 - Control of muon polarization extremely useful when studying $\nu_e \to e$ modes.



THE NEUTRINO FACTORY AND MUON COLLIDER COLLABORATION

