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ABSTRACT

One of the most famous problems of classical geometry is the ruler
and compass construction of a circle tangent to three given circles,
This paper demonstrates one solution, accredited to Apollonius, the
Greek mathematician whose name.thg{@noblem bears, Although the value
of a solution to, say, draftsmgﬁ; a primary interest in it derives
from the mathematical beauty of the problem and the elegance of its
solution, The particular solution presented here is also significant
for the insight it offers into the nature of geometric proofs, Reduc-
tion of the problem to simpler terms, always an ideal, proves especially
useful when applied to the problem of Apollonius, DBecause circles and
points have a siuple geometric relation, the problem of constructing a
eircle tanpent to three others reduces easlily to the case of finding
a cirele tangent to only one eircle, but also passing through two given
points, Of course, the reduction is more complicated than merely replac-
ing a circle by the point: st its center, but the solution to the problem
of Apollonius does follow from straightforward application of elementary
geometric principles,
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A SOLUTION TO THE PROBIEM OF APOLLONIUS

INTRODJCTION

It is ironic that the sclence of geometry is betterlknown for its
inability to solve certain elamentary problems, trisescting aﬁ angle,
scquaring the circle, thanh for its powor to solve relatively difficult
ones. A noteworthy success of geometry has come in the solution to the
problem of Apollonius, that of constructing a cirele tangent to three
given circles using only a compass and straight-edpe, Since the time
the problem was first put forth by Apollonius about 2200 vears ago; .
it has continually fascinated geometers with the result that approximatlay 4\,'
70 different solutions are known today, The particular solution demon-
strated here derives from Apollonius himself, and correspondingly, the
appreach to the problem displays a classieal simplicity. Because the
problem of constructing a circle tangent to three others does not yield
jmmediately to elementary geometric analysis, it is reduced to the
simpler problem of constructing a cirele tangent to two circles and
passing through a fixed point. This simplified problem is still too
difficult for direat solution, so it too is reduced, now to the case
of finding a cirecle tangent to one circle and passing through twe fixed
points., Working backwards, solving the simplest problem first and
bullding upon the result, the complets solution to the problem of Apecllonius
follows at once. When the thres given circles are mutuslly external,
the only case considerad here, thers are eight different cirecles, shown

red in Figure 1, all tangent to the given three,



Figure 2, Solution to the One Cirele-Two Polnt Froblem,



TI. DEVEIOPMENT OF THE SOLUTION

A, One Cirecle-Two Point Froblem

As a preliminary to the complete solution, a construction for a
circle tangent to one circle and passing through two Ffixed voints
nust be found, To do this, some conecepts beyond high school plane
geometry are neceséary and these will be develored when required.
The proofs of theorems and constructions norwally found in a high
school geometry course will be assumed in order to shorten the discus-
sion, The material presented in this paper appesrs in extended form
scattered over 150 pages of Collepe Geometry by Daus (1), Qgﬁﬂyork

—
has been notso much original as it has heen condensation of known proofs,

raexpressing them in a more unified orderr and in slightly more elementary

terms, Two other references which proved helpful in the subsequent

derivations wers College Geometry by Altshiller-Court (2), and Modern

College Geometry by Pavis (3),

1. Some Observetions, Turning to the one circle-two point problem,
lset us first consider the problem already solved and therefrom determine
various properties of the solution., Mlgure 2 shows a cirele tangent to
another and passing through two points. In fact, we see that if ¢ is the
given circle (captial C stands for the center of a circle and small ¢ for
the cirele itself), and Py and Pé are the fixed points, then there are
two different circles, c, and 03, which satisfy the problem, Of course,
if ¢y separates Py from P_, then there exists no solution, but the eriterion
for the problem of Apollonius that the three given circeles are mutually

external prohiblts this unusuzl csse from cccurring.

Examining Figure 2, we notice that the common tangent of circles ¢4

-



Figure 3. The Radlcal Axis of Tangent Circles,



of cireles cq and c3. in a point R which is on line P1P2. This is ovur
clue to the solution, and detalled investigation of point R follows,

To prove that the three lines wentioned actually do meet in a point,
soma properties of these lines must te determined. For ease of
discussion, Figure 2 has been partially redrswn in Fipure 3 to emphasize
line t,. The line of centers of circles ¢4 and ¢, cuts the cirecles at
Ti, the point of tangency, ahd the commen tangent tl is perpendicular

to line G1C, at Ty. From elementary geometry we see that the tangents
PA, P71, and PG from any point P on the common tangent are equal, Recall
that a tangent to a ciréle from a point is the mean proportional between
a secant to the circle from the same point and the external segmént of
that seeant, Thus, since PRD and PEF are secants,

PA?2 = PB x PD = PTy° = PE x PF = FOZ,

2. Power and the Rgdica] Axis, For convenience gghﬁefine the pover
of a péint with respect to 2 circle_as the product of a secant to the circle
from that poiﬁt and the external segment of the secant. In Figure 3, line
ti is the locus of polnts whieh have equal powers with respect to circlesg

as shown by the equation above
and c»} and is called the radical axis of the circles, Similarily, in

%
Fipure 2, line t2 is the radical axis of eircles ¢4 and 03, and line P1P2
is the radical axis circles cp and 03. We note hare that the radical
axis of any two intersecting circles is their common chord extended({ for
radieal axis

further definitions of thé/ and other terms, see the GLCSSARY}, Again in
Migure 2, line P1P2 maets line ts in a point whose power with respeet to
all three circles ¢, cp, ard cq is equal., Iikewise line P1P2 intersects

ty in a point with aqual powers to all thrae circles. If these two points

of intersection are not the ssue, a contradiction oceurs, and therefore,



Figure L. Construcation for the Radieal Center,



the three lines intersect in a unldque point, ealled the radical center
of the three clrcles,

Now that we know that lines PyF,, t4, and t, intersect in a rolnt R,
a means of finding eircles czlénd C from points Py and P2 and circle Sy
appears. When by some method point R has been determined, the points
of tangency Ty and T, can be easily constructed. Then line: C4Ty is the
line of centers of circles ¢y and ¢,, and line €T, is the line of centers
of ¢4 and Cqe The centers of circles Cs and 03 will then be the intersec-
tions of lines C4Ty and CyT, with the perpendicular bisector of line PyPs.

3. Finding the Radical Center, Once the radical center, R, of
circles cq, c2, and ¢q has been foundf the solution to the one circle-
two point problem will be complete, Towards finding R, we notice that
line P1P2, which contains R, is the radical axis of any two circle passing
through P4 and Pz,as well as of ¢, and eq. Suprose a eircle ¢y passes
through Py and PZ and also intersects ¢y at A and B as shown in Figure 4,
Then the radical axis of ¢4 and °) is line AB, which intersectsP1P2 at RY.
The point R' has esqual powers with respect to ¢y and ¢y and alsc that same
power with respeet to ¢, and Cqs since line PyPpR' is the radical axis
of a1l three eircles ey ©
center of ey and the desired circles, e, and 0q (points R and R' of

3 and Cpy o Therefors R' 1a R, the radical

Figures 2 and 4 do superimrose).

4, The Solution. The rather lengthy discussion above can now be
condensed into a few steps which will provide the solution to the one
circle-two point problem. First, construct a ecirele passing through the
siven points, P4 and P», and intersecting the given circle. The center of
this cirele will, of course, be on the rerpendicular bisector of line

segment P,;Po, Next, find the interssction of PyF, with the common chord
1 1°2



Mgure 5. Solution to the Two Circle=One Point Problem,



of the two circles (as in Figure 4), trom R, the point of intersection,
construct tangents to the given circle., The lines from the center of
the given circle thrdugh the two points of tangency then meet the
perpendicular bisector of line P1P2 at the centers of the two circles
tangant to the given circle and vpassing through Pi and PZ' shown in
Mgure 2, These steps constitute the solution to the problem of

Apollonius with two of the three circles reduced to points.

R, Two Circle-.One Point Problem.

1. Exsmining the Problem. When only one of the three given circles
is reduced to a point, the problem bacomes that of construction a eircle
tangent to two given cireles and passing thraﬁgh one point, Again using
the device of considering the solved problem as a means of developing a
construction, the solution appears in Figure 5, Circles 4 and 02 are
given along with point P, Tangent to both ¢q and ¢, Are the circles 03
and ¢y, which also pass through P. Unless the special case arises where
c3 and ¢, are tangent at P, they intersect each other st & point Q as
well as P, If the point Q were somehow known, then circles passing

through P and @, and tangent to either eq or e would satisfy the conditions

2’
of the -two elrcle-cne point problem, Once @ has been found, the problem
reduces to the one circle-two peint case, whosse solution is now known,

2. OQuantitative Observations, In Figure 5, the points of tangency
of the various circles are Ty, To, T3' and Ty, and we notice that lines
Q, T™T2, =nd TBTM all appear to meet line C1Cp at the point O, This is
the lead which shortly provides the solution. To prove that 1inesT1T? and

TBTh do intersect on 1line CCp, we must have some quantitative information

about these lines. The red lines in Migure 5 connect the points of
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FMegurs 6., Triangles Involving Points of Tangency,



tangency with the centers of the circles, using the theorem from elemen-
tary peometry that if two cirecles are tangent, the line of centers of
the circles passes through the point of tangeney. Tor ¢onvenience, the
pertinent. lines appesr in Tigure &: those involving circles C1s Cho aﬁd
¢, in 6a, and those involving ey, 02' and ¢ in 6b, Considering first
Wgure b6a, we see that triangle C3TyTp is isosceles as C3Ty = CqTp = Ty,
the radius of circle 03. Likewise C4Ty equals s radius of Cyn and
CaTp equals I'o, radius of Co. Iine TyT» meets line C4Cp at O', the point
under investigation, If line C,A is drswn parallel to TyTp0', then
T A = ToCp = r, because T41ToCoA is an isosceles trapezold, By the law
of similar triangles, here applied to triangles CiCEA and Cio‘Tl, we have
CyTy/AT, = 0'C1/0'C,, or substituting for 1Ty and AT,

ry/ry = 01¢4/0'C, = (01C, + cicz)/o'cz = 1 + CC,[0'Cy.
Similarliy in Mgure 6b, since BC2 is parallel to T3T40"'

r/rg = 0UC /0"Cy = (O"C, + €1C2)/O"Co = 1 + C4C,/0"C,.
Equating these two expressions for ri/rz, we have -

1+ 64C,/0'C, = 1 + G10/0"C, or 0'Cy = O'C,.
Thus points O!' and O" colneide, and lines TyT2 and T3Th meet CiCp extended
at a point O such that 001/002 = r1/r2.

3, The Homothetic Center. The point O which divides the line of
centers of any two cireles in the ratloe of their radil is called the
homothetic center of those eireles. Actually twoe points will satisfy
this condition, one between the centers of the cirecles, the internal
homothetie center, and another, named the external homothetle center,
outside the centers, but;,of courss, on the line of centers. The point

0 of FMigure 5 is the external homothetic center of ecircles ¢y and c2,



Figure 7. The Homothetie Center,



bacause 061/002 = r1/r2. We have seen how the lines joining the points
of tangency of circles ¢3 and N to eq and ¢, pass through'. the external
homothetic center of ¢4 and Cye We can ask, are there circles passing
through P tangent to ¢y and co such that the lines containing the polnts
of tangency rass through the internal homothetic center? The answer 1is
that two such circles exist;. the only other solutions to the two circle-
one point problem, but thelr nature will not concern us here.

L, Homothetic Center and Radical Axis. Bafore we can prove that
line PQ of Migure 5 passes through O, some mors prorerties of the
homothetie center must be developed. Tn fact, since PQ is the radical
axis of cirecles ¢, and ¢y, 1f 0 is on FQ, then OTi x OT2 must be erual

3
to OTB X OTQ. That is, the powers of 0 with respect to 03 and °y mast
be saual for O to be on the radical axis. Tigure 7 reproduces that part
of Figure 5 which concerns proving 0 is on FQ, Tine ABDEO is any line

from O which cuts circles ¢y and ¢,. Recalling that 001/002 = rilrz, and

: noficing that C4B = r{ and CoE = r,, we have triangle 0C4B similar to
1 2 2 1

triangle OC,E. Therefors, OB/OE = r1/r2. likewise triangle OC,A is
similar to CC,D, and OA/OD = r1/r2. The property of the homothetic
center thet angle OCyB equals angle OCoE provides a construction for O
given only circles ¢y and Cpe As a corallary, the line tangent externally
to ¢y and c2 also passes through O,

Returning to the caleulations, we sse that the relation
OB/OE = OA/OD = rlfrz holds for any line through O which cuts ¢, and e,.
Therafors, it is useful to write OB/OR = OA/OD = r, where = iz a constant

depending only on cireles ey and o Ry the theorem involving secants

2 comstanty
mentioned above, OD x OF = Ik, for all lines OED, (MO NBW PARAGRAM)



Figure 8, Construction for Point Q.



OB x OD = kr, From the equation OR/0% = OA/OD, we get OB x OD = OA x OE = kr
for all 1inesOA, Tor some position of OA, points B and D coincide with |
Ty and Tp of Figure 5. Thersfore, 0Ty x OT, = kr, At some other position
of OA, points A and § coincide with T3 and Ty, sc that OT3 x 0Ty = kr.
Thus 0Ty x OT, = GT3 x OT#’ which proves that ¢ is on PQ, the radical
axis of circles ] and ¢y, 7

%, Reduction to the One Cirecle-Two Point Problem, Ve are now very
close to the solutlon of the two ecirele.ons point problem, which means
determining point Q, and using the one eirecle.two noint construction to
find c3-and ey In Figure 7 OB x OD = kr for all lines OBD, including the
line of centers OCsApA1Gy, Where Ay and A2 are the intersectiorsof circles
e{ and ¢z with line 0C2C4. Then 0A1 X th = kpr = 0Ty X OTZ‘ Since 0P)
and OT»Ty are secants from O %o 03, oTy % O’I‘2 = 0P x 02, and therefore

CP x 00 = 04, X 0A2. Mpure 8 demonstrates the usaefulness of this result,

1

Triangle OA4P is similar to triangle 0QA, because they share a comuon

Yertex angle and have sides in proportion, given by 0A1/OP = OQ/OAZ.

Therefores angle OPA1 equalg sngle OApQ. This property deterwines the

point Q given only ¢y and c¢p and P. With Q thus known, application of

the one circlextwo point construction immediately yields circles ¢ and ¢y,
6. A Construction, After 211 the effort which has gone into the

proof of the solution to the two circle-one point problem, the construction

can be summarized very briefly, Tirst find the external homothetic

center of the given circles ¢, and e, by constructing parallsl radii

1
and connecting the end points. The intersection of this line with the
1ine of centars 0102 determines the external homothetic center O as in

Figure 7. WNext draw lines OP and A4P as in Figure 8, Construct angle



Figure 9, Solutions 1 and 2, r3 Subtracted,



OA2Q equal to anglse OPAi, fixing point Q@ on line QP. Then use the
one circle-two polnt construction with points P and @ and elther circle

¢q or ¢, to find the two circles tangent to ¢y and cp, and passing

2
through P, Again, Figure 5 shows the complete solution to the two circle-
one point problem. The ahove method works even when cirele cq intersects

¢,, 2 case which may arise in the course of the solution to the problen

of Apollonius,

€., Three Circle Problemn,

1. Four Pairs of Solutions, We now have enough' information and
techniques of construction to attack the problem of Apollonius itself.
Again we shall assume that the three given circles are mutually external.
A11 eight possible solutions arpear in Figure 1, but they cannot be
analyzed easily with so many in one draﬁing. Inspection of the figure,
however, reveals that the elght solution naturally group into four pairvs,
shown in Figures 9 through 12, lNotiee how the two solutions of each pair
are the converses of one another., For example, in Mieure 10, black
circle 53 contains only Cs s while su‘contains eq and 03. A similar
" statement h&lds for the other three pairs of solutions,

2. Reduction of ¢4. The thres circle problem consists of exam-
ining the solutions to the problem of Apolloﬁius to find 2 way in which
one clircle may be reduced to a point, so that the known solution to the
two circle-ona point problem ean Be applied, Consider first Tigure 9,

If the radiﬁs of cirele Cq is subtracted from eac?ﬂgfizhe three glven
circles cq, ¢, and g, circle o becomes a point /  the eircks with

canters at G[ and 01 become the red c¢ircles with appropriate radii.



Figure 10, Solutions 3 and 4, r, Added.



Figure 11, Solutidns 5 and 6, ry Added,




The two red cirecles which are tangent to the reduced cirecles ¢y and €y

the

and passing through C, have their centers at points 31 and 3

3 2’
canters of the black solution cireles. The radius of red circle 8y is
greator than that of the black sy by an amount equal to the radius of
03. The red 52 is, however, less than black S5 by the radius of 03,
which occurs because s, is the converse of sy, A solution to the three
cirels problem follows immediately from the above method of reduection,
To find solutions sy and s, simply subtract the radius of Cry from ¢4 and
cp, and then find the centers of the two circles tangent to the reduced
aireles ¢4 and es and passing through CBiby the two elrelewcne noint
construction., The centers of these two circles are also the centers
of.solutions 8y and s,.

3. Reduction of Coe In an effort to generalire the above solution
to the three circle problem. we might surmise that in Figure 19, say,
subtraction of the radius of ey from circles ¢q 2nd Cq would lead to
solutionss3 and sy. If this were done, however, the new circle Cs
would have a negative radius, which is a geometrie impossibility,
Instead, we notlce that 1if eircle ey is reduced to a point and its

radius added to that of ¢, and 03, circles with centers at S3 and Sh

1
are tangent to the red cireles ey and e3 while passing through 02.
Red ¢4 intersects red Ca but without affecting the validity of the
reduction. Appliecsation of the two-circle-one point construction will
directly produce - points 53 and S)y once the reduction deseribed above
has been made.

4, ‘Two More Reductions. Similarily, Figure 11 shows how sclutions
85 and Sg may be found by reducing ecirele ¢y to a point and adding its

radius to ¢p and e¢3. The last two solutions aprear when circle 03 is



Flgure 12, Solutions 7 and 8, rq Added.




reduced to a peoint, while this time adding the radius of circle ey to
ei=and ¢», as shown in Figure 12, Now that these reductions of the
three circle problem to the two circle-one point problem have been

found, the problem of Apollonius ls essentlally solved.
11T, THE UNIFIED SOLUTION

A, First Steps.

After considerable effort, we have developed all the necessary
constructions for solving the problem of Apcllonius., These derivations
_appear perhaps complicated enocugh that it is difficult to separate the
actual construction from the proof., Therefore a summary of the steps
involved in solving the problem ié in order, Obviously,we must work
in reverse order from the way the constructions developed, The first
step is to readuce the system of three qiven circles to an equivalent
system of two circle and a point., This may be done in four ways, and
all four ways must be used to get the eight possible cirlces tangent
to the glven three, One method of reduction is to subtract the radius
of the smallest cirecle from the two larger ones, and reduce the smazllest
cirele to the point at its center., The other three methods consist of

in turn
reducing/each of the three given circles to its central point and adding
to the radius of the other two circles the radius of the cirele which is
reduced, All four of these methods lead to a system of two circles and
cna point, The centers of the two cireles which are tanpent to the two
reduced circles and passing through the center of the third circle are
also thé centers of the sought for solution circles. TFigure 13 illustrates

this and the following steps where ep is reduced to a point, and its



Figure 13. Construction for Solutions 3 and 4,



radius added to cireles cq and 03,producing cireles cl’ and 03'.

B, Further Reduction.

Now that one circle has been reduced to a point, the two circle-one
point construction may be applied., Find the homothetlc center 0 of the
two raduced circles, ci' and 03' in WMigure 13, by first constructing
parallel radii in the two cirecles. Point O is then the intersection of
the 1ine throuzh the end points of the two radii with the line of centers
of the two circles, Note that O is not the homothetie center of circles
Next, draw the Jina from O to the center of the circle which
has been reduced to a point, that is, C,, Designating the pointsof
intersection of e¢ircles cq' and 63‘ with line 0103 points A and B,
construct ang}e OBY equal tg angle 002A with poiﬁt Q on line 002. The
two circles ggésing through C, and Q and tangent to ci' will also be
tangent to 03', and conyersely. Thus the problem has hsen reduced to

the one circle-two point case,

C. Completinq the Solution.

We can choose elther circle ¢,' or e

1 3

in order to find the required tangent circles. ILet us use ci' bacause

' to use with points C, and ¢

it is lafger thancB', ard constructiorswith larger figures are generally
more accurate. Construct the perpendicular bisector of line segment

QCz. shown in red, and then pick some point on the bisector as the center
of a clrele passing through 02 and Q while also intersecting circle cl'
in two points. The common chord of this arbitrary circle and circle ¢4
meects line 0QC, at a point R, Construct the two tangent lines from R

to ci‘, and draw the lines from the two points of tangeney through Cy.



These two lines meet the rerpendicular bisector of QC, at S3 and SM' the

centers of the clreles tangent to ¢, ' and passing throusgh Q and CZ' The

1

centers of the two cirecles tangent to Cyr Cp and ¢, are also points 83

3
and Sh' Merely draw circles with appropriaste radii from 53 and Sk to

complete the sclution,
Only two of the eight scolutions to the problem of Apollonius have
been thus found, but the other six can bhe determined by an exactly

similar method, exeept that circlesci ond e¢. osre reduced to points instead

3

of ¢ . Although this construction is theoretically accurate, in practice

)

it is ssldom - very exact. Many shorter, and, thereflore, practicslly wors
accurate constructions are known, but the one prasented here is note-
worthy “or its stralghtforward motivation of reducing a compler problem

to a simpler one., This solution to the problem of Apollionius demonstrates
how the effective use of such basic peometric tools as reduction can

solve advanced problems,



REFERENCES

1. Paul Daus, College Geometry (MNew York: Prentice-Hall Inc., 1941).

2. MNathan Altshiller-Court, College Geometry (Richmond, Virginia:
Johnson Publishing Co., 1925).

3. David Davis, Modern College Geometry (Cambridge, Mass.:
Addison-Vlesley Press Ine., 1649),




GLOSSARY

Homothetiec Center. The two homothetic centers of a pair of clrcles are
those points which divide the line of centers internally and
externally in the ratio of the radii of the cireles, We are
concerned only with the external homothetic center (see Wigure 7),

Power, The power of a point with respect to a ecircle is the product of
a secant to the ecirecle from the point and the external segment of
that secant, Vhen in the limiting case the secant becomes the
tangent, the numerical value of the power of the polnt is easily-
seen to be the square of the length of the tangent. Of course,
the power of a point is the same for all secants and tangents to
the same circleﬂg?ifigi%%ﬁgiag.

Radical Axis. The radical axis of two’eircies is that 1ine such that
any point on it has equal powers with respect to both circles. As
a corallary, the tangents from any point of the radical axis to
both elrcles are equal. Thus when the two circles are tangent,
the radical axis is the common tangent (see Figure 3). If the
two circles intersect, the line joining the points of intersection,
the common chord, is the radical axis (see PFigure 4#), Tf the
two clrelesdo not intersect or touch, their radical axis stild
exlsts and is perpendicular to the line of centers,

Radical Center., The radical center of three circles is that unique point
which has the same power with respect to all three circles., It is
determined by the intersection of the radical axes of the circles
taken in pairs (Figure 2).

Secant,, A secant is a line from a point to a2 circle which cuts the circle
in two points, Its length is considered to be the distance from the
exterior peint to the further of the two points of intersection,

Its external segment 1s that distance from the exterlior point to
the nearer point of intersection (Figure 3),.



