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Abstract

We deduce estimates of the statistical precision of analyses of CP -violating asymmetries

in the B0-B
0

system via the maximum-likelihood method. In the case of B0 decays to a CP
eigenstate f the decay-time distributions have the form

N±(t) =
N

2
e−t(1± A sin xt),

where N is the total number of decays to state f , A is the CP -violating parameter which is
a simple function of parameters of the C-K-M matrix, x = ∆M/Γ is the mixing parameter,

and +(−) labels decays in which the B was born as a B0(B
0
). The estimated error on the

measurement of A can be written in terms of ‘dilution factors’ as

σA =
1

D
√

N
,

where
D =

x

1 + x2

for a time-integrated analysis;

D = Dt

√
2x2

1 + 4x2

for a time-dependent analysis;

D = Dt
x

1 + x2

√
1 + 2x4

1 + 4x2

for an analysis based only on the shape of the decay distribution; and

Dt = e−x2σ2
t /2

represents the effect of time resolution σt. Results are also presented for simultaneous analysis
of the CP -violating parameter A and the mixing parameter x, and for analysis of the mixing
parameter via decays to non-CP eigenstates. We end with an analysis of asymmetries
appropriate for study of CP violation at an e+e− collider.
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1 Introduction

Following discussion at the mini-workshop on B physics at the SSC Laboratory, June 29-30,
1992, Milind Purohit pointed out that an optimum analysis of CP -violating asymmetries
would be based on the maximum-likelihood method. This should yield greater statistical
precision than the methods presented in refs. [1] and [2]. Here we deduce the size of the
error on various asymmetries via the likelihood technique.

The principal example we consider is the case of neutral-B-meson decay to a CP eigen-

state f . Here we suppose that we have a sample of N decays of either a B0 or B
0

to state
f in an experiment where there are equal numbers of B and B’s produced. Then following
eq. (26) of ref. [2] the time distribution of the observed decays can be written

N±(t) =
N

2
e−t(1± A sin xt), (1)

where throughout this note time is measured in units of the B0 lifetime, and A is a simple
function of the parameters of the C-K-M matrix (in the Standard Model). The subscript +
means that the decay occurred for a B that was a B0 at t = 0, while subscript − means

the B was a B
0

at t = 0. These initial conditions must be determined by observation of
the second B in the event. For hadroproduction of B’s the effect of tagging the second B
factorizes from the analysis of the first and we do not consider the second B in this note
(except in sec. 11 on e+e− colliders).

When A is nonzero there is CP violation, which manifests itself both in the difference
between the shape of distributions N+(t) and N−(t), and in the difference between the total
number of decays of each type:

N± ≡
∫ ∞

0
N±(t)dt =

N

2

(
1± A

x

1 + x2

)
. (2)

Eventually we will wish to consider the effect of the experimental resolution in time t on
the analysis. It is felicitous that this has only a minor effect on the formalism, so we prepare
the general case now. We designate σt as the r.m.s. time resolution, which means that the
observed decays distributions can be obtained by convolution [3]:

N±(t) =
N

2

∫ ∞

−∞
e−(t−t′)2/2σ2

t√
2πσt

dt′e−t′(1± A sin xt′)

=
N

2
eσ2

t /2e−t
(
1± Ae−x2σ2

t /2 sin x(t− σ2
t )

)

≈ N

2
e−t(1± Ae−x2σ2

t /2 sin xt), (3)

using integral 3.896.4 of ref. [4], and where the approximation holds well when σt ¿ 1 (i.e.,
when the time resolution is much better than a lifetime), as is expected to be the case when
a silicon vertex detector is used.

Hence an analysis of distributions of the form

N±(t) =
N

2
e−t(1± a sin xt) (4)
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includes the effect of time resolution if we write

a = ADt, with Dt ≡ e−x2σ2
t /2 (5)

where Dt is the ‘dilution factor’ associated with finite time resolution.
We anticipate that an analysis of B0-B

0
mixing will be similar to that of CP violation.

In the case of mixing, we take N+(t) to be the distribution of decays in which the B was

born as a B0 and decayed as a B0 (or was born as a B
0

and decayed as a B
0
), while N−(t)

is the distribution of decays in which the B was born as a B0 and decayed as a B
0

(or was

born as a B
0

and decayed as a B0. For this we must be able to tell whether the particle was

a B0 or B
0

at the time of decay, and so we cannot use the CP eigenstates discussed above –
unless there is CP violation, for which case the statistical precision will typically be greatly
reduced, as discussed later.

The mixing time distributions have the well-known form

N±(t) =
N

2
e−t(1± cos xt), (6)

leading to integrated numbers of events

N± =
N

2

∫ ∞

0
e−t(1± cos xt) =

N

2

(
1± 1

1 + x2

)
. (7)

As before, the effect of a time resolution σt is readily included via convolution with a gaussian:

N±(t) =
N

2

∫ ∞

−∞
e−(t−t′)2/2σ2

t√
2πσt

dt′e−t′(1± cos xt′)

=
N

2
eσ2

t /2e−t
(
1± e−x2σ2

t /2 cos x(t− σ2
t )

)

≈ N

2
e−t(1± e−x2σ2

t /2 cos xt), (8)

Hence a general mixing analysis will deal with distributions of form

N±(t) =
N

2
e−t(1± a cos xt), (9)

which are closely related to those for CP violation given in eq. (4).

2 The Maximum-Likelihood Method

We recall the technique of data analysis via maximizing the likelihood by the example of N
data points xi sampled from a gaussian distribution of mean a and variance σ:

P (x, a) =
e−(x−a)2/2σ2

√
2πσ

. (10)
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The probability (or likelihood) of observing the data set {xi} is then

L(a) =
N∏

i=1

P (xi, a). (11)

The idea of the maximum-likelihood method is that L is approximately gaussian in the
parameter a (whether or not P (x, a) is a gaussian function of x), and hence the value of a
that maximizes L(a) is the best estimate of a. Further, an excellent estimate of the error on
the measurement of a follows from the second derivative of lnL:

L =
N∏

i=1

e−(xi−a)2/2σ2

, (12)

lnL = −1

2

N∑

i=1

(xi − a)2

σ2
, (13)

d lnL
da

=
1

2

∑

i

xi − a

σ2
, (14)

d2 lnL
da2

= −∑

i

1

σ2
= −N

σ2
. (15)

The maximum of L and for lnL occur at the same value of a, namely a =
∑

i xi/N as
expected. We identify

−d2 lnL
da2

≡ 1

σ2
a

(16)

to find that σa = σ/
√

N as expected.
The method is readily extended to distributions that depend on multiple parameters.

We will later consider two parameters, say a and b, for which the likelihood function L(a, b)
formed from products of the probabilities P (xi, a, b) is expected to be gaussian in a and b:

L(a, b) ∝ exp

{
−1

2

(
(a− atrue)

2

σ2
a

+
2(a− atrue)(b− btrue)

σ2
ab

+
(b− btrue)

2

2σ2
b

)}
. (17)

Hence our estimates on the errors of the fitted values of a and b will be

1

σ2
a

= −∂2 lnL
∂a2

,
1

σ2
ab

= −∂2 lnL
∂a∂b

,
1

σ2
b

= −∂2 lnL
∂b2

. (18)

3 Analysis of a Simple Asymmetry

As a preliminary example of the maximum-likelihood method, we consider the case when
the data can take on only two values, labelled + and −, with probability

P± =
1± a

2
, (19)

where a is the asymmetry parameter. For an experiment in which N+ and N− events are
observed, we form the likelihood function

L =
(

1 + a

2

)N+ (
1− a

2

)N−
. (20)
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The needed derivatives of lnL are

lnL = N+ ln(1 + a) + N− ln(1− a) + constant, (21)

d lnL
da

=
N+

1 + a
− N−

1− a
, (22)

d2 lnL
da2

= − N+

(1 + a)2
− N−

(1− a)2
. (23)

On setting the first derivative to zero, we find the usual expression for the asymmetry:

a =
N+ −N−
N+ + N−

. (24)

From this we express N+ and N− in terms of a and N = N+ + N− to evaluate the error on
the estimate of a as

σa =

√
1− a2

N
, (25)

using eq. (16). This agrees with the usual analysis based on the binomial distribution.

4 Time-Integrated Analysis of CP Violation

After these lengthy preliminaries, we turn to the analysis of CP -violating asymmetries,
beginning with the case where the data in integrated over time to yield the total numbers
of events given in eq. (2). In this case we study a simple asymmetry related by

a = A
x

1 + x2
= ADt−int, (26)

where A is the CP -violating factor introduced in eq. (1), and we define

Dt−int ≡ x

1 + x2
(27)

as the dilution factor due to time integration.
From eq. (25) we estimate the error on the measurement of A as

σA =
σa

Dt−int

=
1

Dt−int

√
1− A2D2

t−int

N
≈ 1

Dt−int

√
N

=
1 + x2

x
√

N
, (28)

where the approximation holds for small values of ADt−int.
The error on A is large for both large and small values of the mixing parameter x. The

minimum error as a function of x occurs if x = 1, for which σA = 2/
√

N . As x ≈ 1/
√

2 for
the B0

d meson, a time-integrated analysis is rather effective in this case.
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5 Time-Dependent Analysis of CP Violation

We now determine what additional statistical power can be expected if we perform an analysis
of the time-dependent CP -violating decay distributions given in eq. (1). The likelihood
function is then

L =
∏

i

e−ti(1 + A sin xti)
∏

j

e−tj(1− A sin xtj), (29)

where subscript i labels events in which the B was born as a B0, and j labels events in

the the B was born as a B
0
. This form of the likelihood function is normalized to include

information both on the shape as well as the integral of the decay distributions.
According to eq. (16) we estimate the error on the measurement of A as

1

σ2
A

= −d2 lnL
dA2

=
∑

i

sin2 xti
(1 + A sin xti)2

+
∑

j

sin2 xtj
(1− A sin xtj)2

. (30)

We estimate the sums by integrals according to

∑

i(j)

f(t) ≈ N

2

∫ ∞

0
dte−t(1± A sin xt)f(t), (31)

which leads to

1

σ2
A

= N
∫ ∞

0

dte−t sin2 xt

1− A2 sin2 xt
≈ N

∫ ∞

0
dte−t sin2 xt =

2x2N

1 + 4x2
, (32)

where we ignore the time-varying term in the denominator for small A, and we have used
integral 3.895.1 of ref. [4].

The full integral can be expressed as an infinite series on expanding the denominator in
a Taylor series. Keeping the first correction we find that

1

σ2
A

≈ N
∫ ∞

0
dte−t sin2 xt(1 + A2 sin2 xt) =

2x2N

1 + 4x2

(
1 +

12A2x2

1 + 16x2

)
. (33)

Thus even for A = 1
3

the correction is at most 8% for any value of x.
We summarize the result (32) by writing

σA ≈ 1

Dt−dep

√
N

with Dt−dep ≡
√

2x2

1 + 4x2
. (34)

The time-dependent dilution factor Dt−dep is larger than the time integrated factor (from
eq. (27)) for any value of x, and consequently the time-dependent analysis is always more
powerful statistically, as is to be expected.

In particular, the time-dependent analysis remains very powerful for large x, where a
time-integrated analysis yields no information. Indeed, for the time-dependent analysis,

σA ≈
√

2

N
for large x. (35)

This result also compares favorably with that reported in refs. [1] and [2], where it was
argued that the effective dilution factor at large x is the average of sin xt over a half-cycle,
namely 2/π, leading to σA ≈ π/2

√
N .
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6 Analysis of the Shape of the Time Distribution

M. Purohit has noted [5] that one could also perform an analysis of CP violation based
only on the shape of the decay distributions, ignoring the CP -violating asymmetry in the
integrated decay rates. Such an analysis would be the only one possible if the experiment

consisted of B’s born only as B0 (or only as B
0
).

The analysis is based on a likelihood function in which the decay distribution is nor-

malized to one (using the notation of eq. (29) and assuming equal numbers of B0 and B
0

initially):

L =
∏

i

e−ti(1 + A sin xti)

1 + A x
1+x2

∏

j

e−tj(1− A sin xtj)

1− A x
1+x2

. (36)

Approximating the sums in the second derivative of lnL by the appropriate integrals, and
again neglecting a factor in A2 in the denominator, we have

σA ≈ 1

Dshape

√
N

with Dshape ≡ x

1 + x2

√
1 + 2x4

1 + 4x2
. (37)

This result is, of course, poorer than the full time-dependent analysis (eq. (34)), but ap-
proaches the same accuracy for large x where only the shape matters. The shape analysis
is less powerful than the time-integrated analysis (eq. (28)) for x <

√
2, which includes the

case of B0
d mesons.

The full time-dependent analysis of the previous section can be considered as the proper
combination of the time-integrated and the shape analyses. We readily verify the validity of
this by noting that

1

σ2(time-dependent)
=

1

σ2(time-integrated)
+

1

σ2(shape)
, (38)

on comparing eqs. (28), (34), and (37).
As a numerical example, we consider the case of x = 1/

√
2, as holds approximately for

B0
d mesons. We then have

σ(time-dependent) =

√
3

N
=

1.73√
N

, σ(time-integrated) =
3√
2N

=
2.12√

N
,

σ(shape) =
3√
N

. (39)

It is remarkable that the time-dependent analysis is only 20% better than the time-integrated
analysis, while the former requires a costly silicon vertex detector.

7 The Effect of Time Resolution

In sec. 1 we noted that the effect on the analysis of a time resolution σt is well approximated
by a dilution factor Dt = e−x2σ2

t /2 multiplying the CP -violating parameter A (see eqs. 3)-(5)).
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Thus the full-time-dependent analysis including time resolution will yield

σA ≈ 1

Dt−depDt

√
N

=

√
1 + 4x2

2x2

ex2σ2
t /2

√
N

. (40)

The effect of time resolution is only noticeable for xt >∼ 1, i.e., for large x, in which case

σA ≈ ex2σ2
t /2

√
2

N
(large x). (41)

8 The Effect of a Cut at Short Times

M. Purohit has also pointed out [5] that in a realistic analysis based on decay times recon-
structed with a silicon vertex detector there will be a loss of events for times t less than
some small time t0, when the secondary vertex cannot be distinguished from the primary. In
this case the full time-dependent analysis proceeds as in sec. 5, except that when estimating
sums by integrals we now use

∑

i(j)

f(t) ≈ N

2

∫ ∞

t0
dte−t(1± A sin xt)f(t), (42)

which leads to

1

σ2
A

≈ N
∫ ∞

t0
dte−t sin2 xt =

e−t0N

2

(
1 +

2x sin 2xt0 − cos 2xt0
1 + 4x2

)
, (43)

using integral 2.663.1 of ref. [4]. As cτ ≈ 320 µm is the B decay length, and the typical
resolution of silicon vertex detector is less than 20 µm, the condition t0 ¿ 1 lifetime will
likely be satisfied. Then for small x we can write

1

σ2
A

≈ 2x2N

1 + 4x2

(
1− t30

6
(1 + 4x2)

)
, (x ¿ 1), (44)

which implies a very small correction. For large x we have

1

σ2
A

≈ N

2
(1− t0), (x À 1), (45)

which indicates that the correction for the cut at small times is small but perhaps notable
in this case.

9 Simultaneous Analysis of Parameters A and x

In all of the proceeding we have tacitly assumed that the value of the mixing parameter x is
known from other studies. This might not be so for B0

s mesons.
Here we consider the time-dependent likelihood function (29) to estimate the errors on

measurement of both A and x according to the procedure of eq. (18). The effect of time

7



resolution is included as the dilution factor Dt to parameter A. With the same approximation
of sums as integrals we find

1

σ2
A

≈ 2x2e−x2σ2
t N

1 + 4x2
,

1

σ2
Ax

≈ Ae−x2σ2
t N

∫ ∞

0
dte−tt sin xt cos xt =

Ae−x2σ2
t N sin(2 tan−1 2x)

2(1 + 4x2)
,

1

σ2
x

≈ A2e−x2σ2
t

∫ ∞

0
dte−tt2 cos2 xt = A2e−x2σ2

t N

(
1 +

cos(3 tan−1 2x)

(1 + 4x2)3/2

)
,(46)

using integrals 3.944.5 and 3.944.6 of ref. [4].
These complicated results are perhaps best illustrated by considering the limits of small

and large x. For small x:

1

σ2
A

≈ 2x2N,
1

σ2
Ax

≈ 2AxN,
1

σ2
x

≈ 2A2N, (small x). (47)

The result for σx suggests that surprisingly good resolution in x can be obtained even when
the mixing oscillations are almost indiscernible. However, one must note the correlation of
the errors in x and A. More properly we should report the error in x as the the extreme
value of the 1-σ error ellipse (from eq. (17)):

A2

σ2
A

+
2Ax

σ2
Ax

+
x2

σ2
x

= 1. (48)

On requiring dx/dA = 0 in this we find that the extreme value satisfies x = Aσ2
Ax/σ

2
A.

Inserting this into eq. (46) we must evaluate to sixth order to find

σx(effective) ≈ 1

Ax2
√

112N
. (49)

So indeed for small x it is very difficult to determine x from studies of CP violation.
For large x eq. (46) becomes

σA ≈ ex2σ2
t /2

√
2

N
, σAx →∞, σx ≈ ex2σ2

t /2

A
√

N
, (large x). (50)

As xσt → 1, which may well hold for the B0
s meson, the resolution in both A and x deteriorate

rapidly. It will be advantageous to have determined x in a separate measurement.

10 Analysis of B0-B
0
Mixing

As it will be advantageous to deduce the mixing parameter x for the B0
s meson from other

than CP -violation data, we consider now the statistical power of such an analysis. This is
based on eq. (6), or eq. (9) when time resolution is included. We form the likelihood function

L =
∏

i

e−ti(1 + a cos xti)
∏

j

e−tj(1− a cos xtj), (51)
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where a = e−x2σ2
t /2 is the effect of time resolution, and subscript i(j) refers to events where

the B is born as a B0 and decays as a B0(B
0
) (or where the B is born as a B

0
and decays

as a B
0
(B0)).

Again, approximating sums as integrals in the second derivative of lnL we find that

1

σ2
x

= N
∫ ∞

0
dte−tt2 = 2N, (52)

so that

σx =
1√
2N

(53)

if xt ¿ 1 so that time resolution may be ignored.
When time resolution is significant we find

1

σ2
x

= Ne−x2σ2
t

∫ ∞

0

dte−tt2 sin2 xt

1− e−x2σ2
t cos2 xt

. (54)

This integral can be bounded by either considering the denominator to be 1 or sin2 xt, leading
to

e−x2σ2
t N

(
1− cos(3 tan−1 3x)

(1 + 4x2)3/2

)
≈ e−x2σ2

t N ≤ 1

σ2
x

≤ 2e−x2σ2
t N, (55)

using integral 3.944.6 of ref. [4], and the approximation holds for large x. This implies

ex2σ2
t /2

√
2N

≤ σx ≤ ex2σ2
t /2

√
N

(56)

holds for any x and σt. Furthermore, when one is not restricted to the use of decay modes
leading to CP eigenstates the total number of events N may be much larger than in (50).

The effect of a cut at a small time t0 is readily considered, as in sec. 8. For small x the
correction is fifth order in t0, while for large x it is third order. That is, the correction is
unimportant.

11 Analysis of CP Violation at an e+e− Collider

As is now well known, when B’s are produced are part of a B0-B
0

pair with definite charge
conjugation, the analysis of CP violation is more intricate. In particular, if the B’s are
produced in a C(odd) state, as from Υ(4S) decay, then a time-integrated asymmetry van-
ishes. However, good statistical power can be recovered by an analysis of time-ordered decay
distributions.

Both B’s of a produced B-B pair must be observed in the CP analysis. We label B1

as the (neutral) B that decays to the CP eigenstate f , and B2 as the (charged or neutral)
B that decays to a state g 6= ḡ that permits us to determine whether B2 was a particle or
antiparticle at the moment of its decay. We can accumulate four time distributions, where
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one B decays at time ta and the other at time tb with ta < tb:

I : ΓB1→f (tb)ΓB2→g(ta),

II : ΓB1→f (ta)ΓB2→g(tb),

III : ΓB1→f (tb)ΓB̄2→ḡ(ta),

IV : ΓB1→f (ta)ΓB̄2→ḡ(tb).

(57)

The four distributions can be combined to form asymmetries in various ways: most
relevant for C(odd) states is

A1(ta, tb) ≡ II + III − I − IV

I + II + III + IV
, (58)

For C(even) states we should consider

A2(ta, tb) ≡ III + IV − I − II

I + II + III + IV
. (59)

The third variation of such asymmetries turns out to vanish and is not considered further:

A3(ta, tb) ≡ I + III − II − IV

I + II + III + IV
. (60)

For the case that mesons 1 and 2 are of the same type the four time distributions take
the form

ΓI(ta, tb) ∝ e−(ta+tb)[1± A sin x(ta ± tb)],

ΓII(ta, tb) ∝ e−(ta+tb)[1 + A sin x(ta ± tb)],

ΓIII(ta, tb) ∝ e−(ta+tb)[1∓ A sin x(ta ± tb)],

ΓIV (ta, tb) ∝ e−(ta+tb)[1− A sin x(ta ± tb)],

(61)

where A the CP -violating factor introduced in eq. (1), and the lower sign in the distributions
holds for C(odd) states |B1〉|B2〉 − |B1〉|B2〉.

Inserting the time distributions into the forms for the asymmetries we have

A1 =





A sin x(ta − tb), C(odd),

0, C(even),

A2 =





0, C(odd),

A sin x(ta + tb), C(even),

A3 = 0.

(62)

Clearly the asymmetry A1 will be useful at an e+e− collider where only C(odd) states are
produced.

10



We first present a time-integrated analysis of these asymmetries, as discussed in ref. [1].
Because of the time ordering in the definition of the distributions I-IV , the form of the
integrals is

∫ ∞

0
dta

∫ ∞

ta
dtbΓI(ta, tb) =

1

2

(
1± A

x

1 + x2

)
, C(odd),

=
1

2

(
1± A

2x

(1 + x2)2

)
, C(even). (63)

Thus we can write

A1 = D1,t−intA with D1,t−int =
x

1 + x2
C(odd), (64)

A2 = D2,t−intA with D2,t−int =
2x

(1 + x2)2
C(even). (65)

The above results can be improved upon with a maximum-likelihood analysis. We label
events in distributions I, II, III, and IV by indices i, j, k, and l, respectively, to form the
likelihood function

L =
∏

i

ΓI(tai, tbi)
∏

j

ΓII(taj, tbj)
∏

k

ΓIII(tak, tbk)
∏

l

ΓIV (tal, tbl). (66)

We again approximate the sums in the second derivative of lnL via sums as

∑

i

f(tai, tbi) → N

2

∫ ∞

0
dta

∫ ∞

ta
dtbΓI(ta, tb)f(ta, tb), etc., (67)

for a total sample of N events, noting eq. (63). Ignoring the term in the denominator in A2

the integrals are similar to those encountered previously:

1

σ2
A

≈ 2N
∫ ∞

0
dtae

−ta

∫ ∞

ta
dtbe

−tb sin2 x(ta± tb) = 2N
∫ ∞

0
dtae

−2ta

∫ ∞

0
dse−s sin2 x(s+ ta± ta),

(68)
where s = ta− tb. We characterize the results of the time-dependent analysis via the dilution
factors

D1,t−dep =

√
2x2

1 + 4x2
, C(odd), and D2,t−dep =

√
8x4 + 6x2

1 + 4x2
, C(even). (69)

The dilution factors from the time-dependent maximum-likelihood analysis are larger than
those for the time-integrated analysis, and are the best possible. For large x the time-
dependent analysis is particularly advantageous.

As was mentioned in sec. 5, the dilution factors for the case of large asymmetry A can
be expressed as infinite series, the first terms of which are given in eq. (69). These series
have been given in notes by Frank Porter [6].

The effect of time resolution σt on the analysis can be calculated as in eq. (3), and can
be characterized (for small A) by the dilution factor

Dt = e−x2σ2
t in the relation σA1,2 =

1

D1,2Dt

√
N

. (70)
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As both B’s must be time-resolved in this analysis the dilution factor Dt is the square of that
encountered in the single-B analysis. Viewed another way, since two times are measured for
each event at an e+e− collider the error on the sum or difference is

√
2σt. Using this in

eq. (5) we also arrive at eq. (70).
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