

Observation of Mixing Angle θ_{13}

in the Daya Bay Reactor Antineutrino Experiment

Kirk T McDonald *Princeton U* (updated June 1, 2012) on behalf of the Daya Bay Collaboration

We observe that

4/24/2012

 $\sin^2 2\theta_{13} = 0.092 \pm 0.016 \text{ (stat.)} \pm 0.005 \text{ (syst.)}$ after 55 days of operation with 6 detectors at 3 sites close to 3 pairs of ~ 3 GW reactors.

F.P. Ahn et al., Phys. Rev. Lett. 108, 171803 (2012).

After 110 days of running, $sin^2 2\theta_{13} = 0.089 \pm 0.010 (stat.) \pm 0.005 (syst.)$

Independent Evidence via Spectral Analysis

Neutrino oscillations at Daya Bay deplete the e⁺ energy spectrum near 3 MeV, \Rightarrow Far-detector (EH3) spectrum will be "flatter" if oscillations have occurred.

Daya Bay

Backup Slides

The MNS matrix relates the mass eigenstates (v_1 , v_2 , v_3) to the flavor eigenstates v_e , v_{μ} , v_{τ}):

MNS = Maki-Nakagawa-Sakata, who (1962) extended Ponetcorvo's prediction (1957) from 2 to 3 neutrinos.

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$$

U_{e3} is last unknown matrix element

 $\sin^2 \theta_{12} \sim 0.31$ $\sin^2 \theta_{23} \sim 0.43$

• It can be described by three 2D rotations:

Recent Experimental Results (2011):

θ_{13} may be large

Accelerator-based appearance expts. **MINOS** T2K 2.0 $\Delta m_{23}^2 > 0$ $\Delta m^2 > 0$ $\pi/2$ 1.5 - MINOS Best Fit 68% CL $\delta_{\rm CP}$ $\delta_{CP}(\pi)$ 90% CL 1.0 ----- CHOOZ 90% CL Best fit to T2K data 2sin²θ₂₂=1 for CHOOZ 68% CL $-\pi/2$ 90% CL 0.5 2.0₁ $\Delta m^2 < 0$ $\Delta m_{23}^2 < 0$ $\pi/2$ 1.5 $\delta_{\rm CP}$ $\delta_{cP}(\pi)$ 1.0 8.2×10²⁰ POT T2K $-\pi/2$ 0.5 1.43×10^{20} p.o.t. MINOS PRELIMINARY 0.2 0.4 0.5 06 0.0 0.3 0.1 0.1 0.2 0.3 $\sin^2 2\theta_{13}$ $2\sin^2(2\theta_{13})\sin^2\theta_{23}$ PRL 107, 041801 (2011)

Reactor-based disappearance expt.

Double Chooz

FIG. 2. Daily number of $\bar{\nu}_e$ candidates as a function of the expected number of $\bar{\nu}_e$. The dashed line is a fit to the data, the band is the 90% CL of this fit. The dotted line is the expectation in the no-oscillation scenario. The triangle indicates the one day measurement with both reactors off.

PRL 107, 181802 (2011)

0.4

arXiv:1112.6353v1

$0.03(0.04) < \sin^2 2\theta_{13} < 0.28(0.34)$ at 90% CL

T2K has 6 candidate electron-appearance events, all close to the beam-entry side of the Super-K detector.

4/24/2012

sin²2θ₁₃ = 0.086 ± 0.041(stat) ± 0.030(sys) (0.015 < sin²2θ₁₃ < 0.16 at 90% CL)

Seminar at Oxford U

Combined Analysis

$\sin^2 2\theta_{13}$	best fit	1σ	2σ	3σ	$\Delta \chi^2(\theta_{13}=0)$
normal ordering:	0.092	0.051 - 0.140	0.021 - 0.186	0.002 - 0.233	9.50
inverted ordering:	0.092	0.056 - 0.146	0.024 - 0.198	0.002 - 0.246	9.43

ava Ba

Combined measurements exclude θ_{13} = 0 at greater than 3 σ , but no single experiment has this sensitivity. 4/24/2012 **KT McDonald** Seminar at Oxford U 6

The Daya Bay Collaboration

Antarctica

~ 250 collaborators, 38 institutions

Political Map of the World, June 1999

Europe (3) (10)

JINR, Dubna, Russia Kurchatov Institute, Russia Charles University, Czech Republic

North America (16)(~100)

BNL, Caltech, LBNL, Iowa State Univ., Illinois Inst. Tech., Princeton, RPI, Siena, UC-Berkeley, UCLA, Univ. of Cincinnati, Univ. of Houston, Univ. of Wisconsin-Madison, Virginia Tech., William and Mary, Univ. of Illinois-Urbana-Champaign

Asia (19) (~140)

IHEP, Beijing Normal Univ., Chengdu Univ. of Sci. and Tech., CGNPG, CIAE, Dongguan Polytech. Univ., Nanjing Univ., Nankai Univ., Shandong Univ., Shanghai Jiao Tong Univ., Shenzhen Univ., Tsinghua Univ., USTC, Zhongshan Univ., Univ. of Hong Kong, Chinese Univ. of Hong Kong, National Taiwan Univ., National Chiao Tung Univ., National United Univ.

Daya Bay Experiment Design Principles

- <u>Identical near and far detectors</u> cancel many systematic errors
- <u>Multiple detectors</u> at 3 locations boost statistics while reducing systematic errors with multiple independent measurements
- <u>Three-zone detector design</u> eliminates the need for spatial cuts which can introduce systematic uncertainties
- <u>Shielding</u> from cosmic rays and natural radioactivity reduces background rates
- <u>Movable detectors</u> allow possible cross calibration between near and far detectors to further reduce systematic errors

m

Experimental Layout

	Overburden	R_{μ}	E_{μ}	D1,2	L1,2	L3,4
EH1	250	1.27	57	364	857	1307
EH2	265	0.95	58	1348	48 0	528
EH3	86 0	0.056	137	1912	1540	1548

mwe Hz/m²GeV m m

Daya Bay

EH = Experimental Hall D.B. = Daya Bay reactor cores L.A. = Ling Ao reactor cores L.A. II = Ling Ao II reactor cores 4/24/2012 KT McDonald

Antineutrino Detector Calibration System

Automated calibration system

 \rightarrow Routine weekly deployment of sources, lowered into any of the 3 liquid zones.

LED light sources

- \rightarrow Monitoring optical properties
- e⁺ and n radioactive sources (fixed energy) → Energy calibration
- \rightarrow Energy calibration

4/24/2012

Automated calibration system

KT McDonald

- ⁶⁸Ge source
- Am-¹³C + ⁶⁰Co source
- LED diffuser ball

Antineutrino Detector Assembly

Transporting the Antineutrino Detectors

Cobra

Seminar at Oxford U

Detector Filling and Target Mass Measurement

out of 20,000 or < 0.02%.

Jan-11 Feb-11 Mar-11 Apr-11 May-11 Jun-11 Jul-11 Aug-11 Sep-11 Oct-11 Nov-11

Monitoring Date (since production)

Gd-loaded scintillator shows good stability with time.

4/24/2012

Daya Bay

KT McDonald

Seminar at Oxford U

The Muon Tagging System

Dual tagging systems: 2.5-m thick, two-zone water shield, instrumented with PMTs, + resistive plate chambers (RPCs) above the water pool.

- Design tagging efficiency > 99.5% with uncertainty < 0.25%.
- Princeton hardware contribution is to the gas system for the RPCs.

Daya Baj

KT McDonald

Water Shield Suppresses Background Radioactivity

Singles rates vs. height in the partially filled pool show the suppression of radioactive backgrounds (due to the rock and/or radon) by the water shield.

[PMT coverage in the water pool is poor at the top, where the RPC array augments the muon coverage – but not that for rock radioactivity.]

Daya Bay

4/24/2012

KT McDonald

Installation in EH2 and EH3

Hall 2: Began 1 AD operation on Nov. 5, 2011

Hall 3: Began 3 AD operation on Dec. 24, 2011

2 more ADs still in assembly; installation planned for Summer 2012

We have used the 3 months of data for side-by-side comparison of first two detectors.

Detailed comparison of AD1 and 2: F.P. An et al., <u>http://arxiv.org/abs/1202.6181</u>

4/24/2012 k

Seminar at Oxford U

• Measured rates are consistent with expected ~ 20 Hz for each AD at the Daya Bay near site (EH1).

aya Ba

• Weekly automatic detector calibration.

• Energy responses of the detectors are studied with ⁶⁸Ge, ⁶⁰Co and Am-¹³C.

- Two ADs with similar energy responses (~ 0.5%)
- Consistent response in capture time measurements

- Run-by-run calibration of detectors using spallation neutrons
 - ~ 168 p.e./MeV for AD1
 - ~ 169 p.e./MeV for AD2

4/24/2012

p.e. = photoelectrons detected in a photomultiplier tube.

 The difference in AD1 and AD2 triggers is mostly due to after-pulsing in the PMTs immediately following a muon event (which leads to a relatively large signal).

Pool Muon: Reject IBD candidate if < 0.6 ms after pool muon AD Muon (> 20 MeV): Reject if < 1 ms before IBD candidate AD Shower Muon (> 2.5GeV): Reject if < 1 s before

Multiplicity cut:

24/2012

No other AD signal > 0.7 MeV in -200 μs to 200 μs of IBD.

With Flasher cut, Muon veto, Prompt Energy, Delayed Energy, Time correlation and Multiplicity cuts.

Flasher Cut

A PMT "flash" leads to light collected near that PMT, and on the opposite side of the detector. Q = charge collected from PMT anode MaxQ = $Q_{max} / \Sigma Q$

Define Quadrant 1 as that which contains the "hottest" PMT

KT McDonald

Quadrant = Q_{Quadrant3} / (Q_{Quadrant2} + Q_{Quadrant4})

Consistent IBD capture time measured in all detectors

Simulation contains no background (deviates from data at > 150 µs)

Inverse-Beta-Decay Positron Positions in AD1, 3, 6

Dava Ba

Two random single signals can accidentally mimic a prompt-delayed IBD signal

Accidental rate and spectrum can be accurately predicted from singles data.

Multiple analyses/methods estimate consistent rates.

Date

	EH1-AD1	EH1-AD2	EH2-AD1	EH3-AD1	EH3-AD2	EH3-AD3
Accidental rate(/day)	9.82±0.06	9.88±0.06	7.67±0.05	3.29±0.03	3.33±0.03	3.12±0.03
B/S	1.37%	1.38%	1.44%	4.58%	4.77%	4.43%

4/24/2012

Lower rate of accidentals in EH3 is due to the lower rate of neutrons from cosmic-ray muons (although rate of neutrons from the retracted Am-C source is the same).

Background: Fast neutrons

Events/2Me/

10⁴

 10^{3}

 10^{2}

10

5

10²

0

10

15

prompt energy of fast neutron candidate

20

25

30

EH1 Prompt energy, AD#1

38256

3.587

17.66/17

 8.685 ± 0.695

2.47

Entries

Mean

RMS

00

Constrain fast-n rate using

IBD-like signals in 10-50 MeV

35

40

Prompt energy (MeV)

Entries

Mean

RMS

DO

 χ^2 / ndf

45

prompt_fn_hist

6191

25.93

14.06

60.24 / 34

 128.7 ± 1.9

 χ^2 / ndf

Fast Neutrons:

Energetic neutrons produced by cosmic rays (inside and outside of muon-veto system)

Mimics antineutrino (IBD) signal:

- Prompt: Neutron collides/stops in target

- Delayed: Neutron captures on Gd

4/24/2012

50

Background: ¹³C(a,n)¹⁶O

¹³C (α , n) ¹⁶O $n + p \longrightarrow n + p$ 1 $n + 1^{2}C \longrightarrow n + 1^{2}C^{*}(4.4 \text{ MeV})$ $1^{12}C + \Upsilon$ 2 ¹³C (α , n) ¹⁶O*(6.05 MeV) $1^{16}O + \Upsilon$ 3 ¹³C (α , n) ¹⁶O*(6.13 MeV) $1^{16}O + e^{+} + e^{-}$ 4

Example alpha rate in AD1	²³⁸ U	²³² Th	²³⁵ U	²¹⁰ Po
Bq	0.05	1.2	1.4	10

Potential alpha sources: ²³⁸U, ²³²Th, ²³⁵U, ²¹⁰Po:

Each of them are measured in-situ:

U & Th: cascading decay of

Bi (or Rn) - Po - Pb

²¹⁰Po: spectrum fitting

Combining (a,n) cross-section, correlated background rate is determined.

4/24/2012

B/S (0.006±0.004)% B/S (0.04±0.02)%

Data Set Summary

	AD1	AD2	AD3	AD4	AD5	AD6
Antineutrino candidates	28935	28975	22466	3528	3436	3452
DAQ live time (day)	49.5530		49.4971		48.9473	
Veto time (day)	8.7418	8.9109	7.0389	0.8785	0.8800	0.8952
Efficiency	0.8019	0.7989	0.8363	0.9547	0.9543	0.9538
Accidentals (/day)	9.82 ± 0.06	9.88±0.06	7.67 ± 0.05	3.29 ± 0.03	3.33 ± 0.03	3.12 ± 0.03
Fast neutron (/day)	0.84 ± 0.28	0.84 ± 0.28	0.74 ± 0.44	0.04 ± 0.04	0.04 ± 0.04	0.04 ± 0.04
⁸ He/ ⁹ Li (/day)	3.1±	1.6	1.8 ± 1.1		0.16 ± 0.11	
Am-C corr. (/day)			0.2 ± 0.2			
$^{13}C(\alpha, n)^{16}O(/day)$	0.04 ± 0.02	0.04 ± 0.02	0.035 ± 0.02	0.03 ± 0.02	0.03 ± 0.02	0.03 ± 0.02
Antineutrino rate (/day)	714.17 ±4.58	717.86 ±4.60	532.29 ±3.82	71.78 ±1.29	69.80 ±1.28	70.39 ±1.28

Antineutrino flux is estimated for each reactor core

Flux estimated using:

 $S(E_{\nu}) = \frac{W_{th}}{\sum_{i} (f_i/F)e_i} \sum_{i}^{istopes} (f_i/F)S_i(E_{\nu})$

Reactor operators provide:

- Thermal power data: W_{th}

- Relative isotope fission fractions: f_i

Energy released per fission: e_i V. Kopekin et al., Phys. Atom. Nucl. 67, 1892 (2004)

Antineutrino spectra per fission: S_i(E_v) K. Schreckenbach et al., Phys. Lett. B160, 325 (1985) A. A. Hahn et al., Phys. Lett. B218, 365 (1989) P. Vogel et al., Phys. Rev. C24, 1543 (1981) T. Mueller et al., Phys. Rev. C83, 054615 (2011)

P. Huber, Phys. Rev. C84, 024617 (2011)

'24/2012

Flux model has negligible impact on far *vs*. near oscillation measurement

Antineutrino Detection Rate vs. Time

Uncertainty Summary

Detector					
	Efficiency	Correlated	Uncorrel	ated	For near/far rate analysis
Target Protons		0.47%	0.03%		only uncorrelated
Flasher cut	99.98%	0.01%	0.01%		uncertainties are relevant.
Delayed energy cut	90.9%	0.6%	0.12%		
Prompt energy cut	99.88%	0.10%	0.01%		
Multiplicity cut		0.02%	< 0.01%		
Capture time cut	98.6%	0.12%	0.01%		Largest systematics
Gd capture ratio	83.8%	0.8%	<0.1%	<──	are smaller than far
Spill-in	105.0%	1.5%	0.02%		site statistics (~1%)
Livetime	100.0%	0.002%	<0.01%		
Combined	78.8%	1.9%	0.2%		
	Rea	ctor			
Correlate	d	Uncorr	elated		
Energy/fission	0.2%	Power	0.5%		Influence of uncorrelated
$\overline{\nu}_{e}$ /fission	3%	Fission fraction	0.6%		reactor systematics
		Spent fuel	0.3%		reduced (~1/20) by far vs.
Combined	3%	Combined	0.8%		near measurement.

Far vs. Near Rate Analysis

Compare the far/near measured rates (and spectra)

 $R = \frac{Far_{measured}}{Far_{expected}} = \frac{M_4 + M_5 + M_6}{\sum_{i=4}^{6} (\alpha_i(M_1 + M_2) + \beta_i M_3)}$ M_n is the measured IBD rate in detector n. Weights a_i , β_i are determined from baselines and reactor fluxes. $a \sim 0.014$, $\beta \sim 0.10$ \Rightarrow EH2 weighted 7 times EH1

R = 0.940 ± 0.011 (stat) ± 0.004 (syst)

Clear observation of far-site deficit. Spectral distortion consistent with oscillation.*

• Caveat: Spectral systematics not fully studied; θ_{13} value from shape analysis is not recommended.

- The Daya Bay reactor neutrino experiment has made an unambiguous observation of reactor electron-antineutrino disappearance at ~ 2 km for E_v ~ 3 MeV:

$R_{far/near} = 0.940 \pm 0.011 \text{ (stat)} \pm 0.004 \text{ (syst)}$

- Interpretation of this disappearance as neutrino oscillation in a 3-neutrino context yields, via a χ^2 analysis:

sin²2 θ_{13} = 0.092 ± 0.016 (stat) ± 0.005 (syst)

ruling out zero at 5.2 standard deviations.

 θ_{13} = 8.8° (or 81.2°?), sin² θ_{13} = 0.024

 Installation of final pair of antineutrino detectors this Summer

In the 3-v context, taking $\Delta m_{13}^2 \sim \Delta m_{23}^2$, the v_e survival probability is $P(\overline{v}_e \rightarrow \overline{v}_e) = 1 - \sin^2 2\theta_{13} \sin^2 \left(\Delta m_{13}^2 L / 4E_v \right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\Delta m_{12}^2 L / 4E_v \right)$ For large *L*, the 2nd term averages to (1/2) $\sin^2 2\theta_{13} \sim 0.04$, such that

 $P(\overline{\nu}_e \to \overline{\nu}_e) \approx 0.96 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\Delta m_{12}^2 L / 4E_{\nu} \right)$

If $\theta_{13} \sim 81^\circ$, then no oscillations could be seen in long baseline experiments with reactor or solar neutrinos.

The clear evidence for oscillations in the KamLAND experiment excludes that θ_{13} is near 90°. Phys. Rev. Lett. 100, 221803 (2008)

Using our value for θ_{13} = 8.8°,

 $P(\overline{\nu}_e \to \overline{\nu}_e) \approx 0.96 - 0.95 \sin^2 2\theta_{12} \sin^2 \left(\Delta m_{12}^2 L / 4E_{\nu} \right)$

 \Rightarrow 5% increase in sin² θ_{12} compared to previous fits.

Asymmetric Confidence Intervals in θ_{13}

자연녹지

reactor

보전복지

detector

원거리터널

근거리터널

1383.1 M

계마리

 \mathcal{S}

~256 m

Yonggwang Nuclear Power Plant

Six ~ $3 GW_e$ reactors along a line.

1 Near and 1 Far detector, each 16 tons.

229 days of data since August 2011.

 $sin^2 2\theta_{13}$ = 0.113 \pm 0.013 (stat) \pm 0.019 (syst.)

http://arxiv.org/abs/1204.0626 (Apr. 8, 2012)

Projected Uncertainty for Future Running of the Daya Bay and RENO Experiments

1 σ Uncertainty vs. time assuming VN statistics

4/24/2012

KT McDonald

Seminar at Oxford U