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What is Higher Order QED?

LANL preprint server: Exactly 1 paper found for “higher order

QED” (but ≈ 750 found for “QED”).

What is low order QED?

Higher Order QED is anything else?

I.e., Any process with more than one photon?

Thus, recent “discovery” at LEP of Compton scattering:
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Trees

More usual definition: Count vertices;

Higher order ⇔ More than 2.

[Classical: dipole radiation is lowest order.]

Simplest higher order: Trees (no loops) ⇒ Radiative corrections.

Perturbation series: n vertices ⇒ Rate ∝ αn,

α = e2/h̄c = 1/137 ⇒ Higher order typically smaller.

But there is a nonperturbative regime...
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Loops

Calculations now for 10 extra vertices ⇔ relative O(α5).

Four classic tests: [Reviews: Kinoshita (1990), Escribano (1997)]

• Hydrogen Lamb Shift: σ∆E(2S1/2 − 2P1/2) = 2 ppm

[Theory limited by uncertainty in proton radius].

• Muonium hyperfine splitting: Expt. − Theory ≈ 0.25 ppm

[muon mass, O(α3) terms, hadronic (+ weak) loops].

New LAMPF data being analyzed; error → 0.1 ppm.

• e anomalous magnetic moment: Expt. − Theory ≈ 25 ppb

[α, O(α5) terms].

• µ anomalous magnetic moment: Expt. − Theory ≈ 10 ppm

[O(α5) terms, hadronic (+ weak) loops].

New BNL expt. starts in 2 months; error → 0.5 ppm.

Trouble spot: Observed orthopositronium decay rate differs from

theory by 6 σ; but theory is incomplete at relative O(α2).
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Running Coupling Constant

α(Q2) =
α0

1− α0
3π ln

(
Q2

Λ2

)

Extrapolation:

α−1(M 2
Z) = 128.93± 0.02;

half of change due to hadronic corrections [Davier & Höcker, 1998]

TOPAZ result [Levine et al., 1997]:

α−1(Q2 = (57.77 GeV/c)2) = 128.5± 1.8 [Theory = 129.6].

Obtained by comparing e+e− → µ+µ− to e+e− → e+e−µ+µ−.
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Landau Pole Problem

For large Q2, α grows arbitrarily large.

Can avoid by chiral symmetry breaking [Göckeler et al., 1998].

QED Phase Transition at Strong Coupling?

Suggested in lattice calculations [Kogut et al., 1984 on].

⇒ New types of QED bound states.

QED Phase Transition in Strong Fields?

E > Ecrit = m2c3/eh̄ = 1.3× 1016 V/cm = QED critical field,

above which spontaneous pair creation occurs.

No theory of strong field phase change.

“Evidence” of positron peaks in low-energy heavy ion collisions

[Darmstadt] now largely withdrawn.

[For “cultural” observations, see Taubes, 1997.]
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Supersymmetry

Can also avoid Landau pole problem via grand unification and

strings.

Elegant variant of grand unification invokes supersymmetry to

bring the running of αQED, αstrong and αweak together at a common

energy.

[Dimopoulos, Raby & Wilczek, 1981]
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Boxes

Electromagnetic boxes observed via Delbrück scattering.

[Jarlskog et al., 1983]

Light-by-light scattering with real photons not yet observed.

Finite Temperature QED

Light-by-light scattering shifts Planck spectrum:

∆λ

λ
∝ α2




kT

mc2



4

≈ 10−35



T

300K



4

, [Barton, 1990; Ravndal, 1997]

Compton scattering
of LEP beam off
thermal photons:

[Dehning et al., 1990]
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The Gauge Theory of Arbitrage
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Sonoluminescence

In 1850, the Navier-Stokes equation was the “theory of every-

thing”, but it doesn’t predict sonoluminescence. [Erber]

[Sonoluminescence is what makes nitroglycerine explode.]

• Preparata (1998): QED theory of water vapor predicts

emission of light when water vapor condenses at density near

1 g/cm3.

• Schwinger (1992): a bubble is an electromagnetic cavity; an

imploding bubble will radiate away the changing, trapped zero-

point energy.

• Liberati (1998): Imploding bubble ⇒ rapidly changing index

⇒ associated radiation.

This relates to an earlier idea:

• Yablonovitch (1989): An accelerating boundary across which

the index of refraction changes is a possible realization of the

Hawking-Unruh effect, leading to conversion of QED vacuum

fluctuations into real photons.
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The Hawking-Unruh Effect

Hawking (1974): An observer outside a black hole experiences

a bath of thermal radiation of temperature T =
h̄g

2πck
,

where g is the local acceleration due to gravity.

Unruh (1976): According to the equivalence principle an accel-

erated observer in a gravity-free region should also experience a

thermal bath with: T =
h̄a

2πck
,

where a is the acceleration of the observer as measured in his

instantaneous rest frame.

Bell (1983), Leinaas (1998), Unruh (1998): Incomplete polariza-

tion of electrons in a storage ring is explained in detail by Hawking-

Unruh excitation.
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Strong-Field QED

For high acceleration, need strong electromagnetic field.

Strongest macroscopic electromagnetic fields are in lasers.

Tabletop teraWatt lasers can be focused to > 1019 W/cm2.

⇒ Electric fields > 100 GeV/cm.

[Photon number density > 1027/cm3.]

(Nonperturbative) physics described by two dimensionless mea-

sures of field strength:

η =
e

√〈AµAµ〉
mc2

=
eErms

mω0c
=

eErmsλ0

mc2
,

governs the importance of multiple photons in the initial state, and

characterizes the “mass shift”: m = m
√

1 + η2. [Kibble, 1996]

Υ =

√〈(F µνpν)2〉
mc2Ecrit

=
2p0

mc2

Erms

Ecrit
=

2p0

mc2

λC

λ0
η,

governs the importance of “spontaneous” pair creation, where

Ecrit = m2c3/eh̄ = mc2/eλC = 1.3× 1016 V/cm.
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Where to Find Critical Fields

• The magnetic field at the surface of a neutron star

approaches the critical field Bcrit = 4.4× 1013 Gauss.

• During heavy-ion collisions where Ztotal = 2Z > 1/α, the

critical field can be exceeded and e+e− production is expected.

Emax ≈ 2Ze

λ2
C

= 2ZαEcrit.

• Pomeranchuk (1939): The earth’s magnetic field appears to be

critical strength as seen by a cosmic-ray electron with 1019 eV.

• The electric field of a bunch at a future linear collider

approaches the critical field in the frame of the oncoming bunch.

• The electric field of a focused teraWatt laser appears critical

to a counterpropagating 50-GeV electron.
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Physics at High η: Nonlinear Compton Scattering

e + nω0 → e′ + ω [Bula et al., 1996]
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[Reiss (1962), Nikishov & Ritus (1964), Narozhny (1965)].
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Physics at High Υ: Pair Creation by Light

Two step process: e + ω0 → e′ + ω, then ω + nω0 → e+e−.

106± 14 signal positrons. [Burke et al., 1997]
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Strong Field Pair Creation as Barrier Penetration

For a virtual e+e− pair to materialize in a field E the electron and

positron must separate by distance d sufficient to extract energy

2mc2 from the field:

eEd = 2mc2.

The probability of a separation d arising as a quantum fluctuation

is related to penetration through a barrier of thickness d:

P ∝ exp

− d

λC


 = exp


−2m2c3

eh̄E


 = exp


−2Ecrit

E


 = exp


− 2

Υ


 .

[Sauter (1931), Heisenberg and Euler (1936), Schwinger (1951)]
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Summary

• Higher-order QED (physics depending on high powers of αQED)

is very mature both experimentally and theoretically.

New results will probe strong and electroweak corrections rather

than yet higher orders of QED.

• Nonperturbative (strong-field) QED is still relatively young.

New experiments involving intense laser beams at η ≈ 1 and

Υ ≈ 1 agree with existing theories.

The frontier is at η, Υ À 1.
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