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1 Problem

Λ0 hyperons are produced by a pion beam in the reaction π−p → K0Λ0, and observed by the
decay Λ0 → pπ− (which is a weak interaction that does not conserve parity). Let J denote
the spin of the Λ (considered to be unknown in this problem, while the spins of the π−, p
and K0 are known), and θ be the angle of a decay product in the Λ rest frame, relative to
the direction of the Λ in the lab frame. In the case where the Λ is produced exactly along
the beam direction, what are the possible values of Jz?

Show that for unpolarized beam protons, and for Λ’s produced along the beam direction,
the Λ-decay angular distribution depends on J according to

J = 1/2, isotropic,

J = 3/2, 3 cos2 θ + 1,

J = 5/2, 5 cos4 θ − 2 cos2 θ + 1.

(1)

Hints in Sakurai, Invariance Principles and Elementary Particles (1964), p. 17.
http://kirkmcd.princeton.edu/examples/EP/sakurai_64.pdf

This problem is based on R.K. Adair, Angular Distribution of Λ0 and θ0 Decays, Phys.
Rev. 100, 1540 (1955), http://kirkmcd.princeton.edu/examples/EP/adair_pr_100_1540_55.pdf.
The principle of this problem was used to determine that the Λ0 has spin-1/2 by F. Eisler
et al., Experimental Determinations of the Λ0 and Σ− Spins, Nuovo Cim. 7 222 (1958),
http://kirkmcd.princeton.edu/examples/EP/eisler_nc_7_222_58.pdf.
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2 Solution

A two-particle state can only have orbital-angular-momentum component Lz = 0 along a
z-axis.

If the Λ0 moves along the beam axis, taken to be the z-axis, then so also does the K0,
and no matter what is their orbital angular momentum L, Lz = 0. Of course, the initial
π−p state has Lz = 0, and Jz = ±1/2, since the pion is spinless and the proton has spin-1/2.
Conservation of angular momentum then implies that Jz = ±1/2 for the final state; these
two states are distinguishable, so it suffices to consider only one, say Jz = 1/2.

Similarly, since the initial state can only have J = n/2 for odd n this also holds for the
final state, which in turn implies that the spin of the Λ0 is m/2 for odd m, since the K0 is
spinless.

1. JΛ = 1/2.

In general, the decay final state π−p could have L = 0 or 1 such that J = 1/2. If the
Λ has Jz = ±1/2 in its rest frame, then this couples to the L = 0 π−p state according
to

|1/2, 1/2〉 = |0, 0〉|1/2,±1/2〉, (2)

and couples to the π−p states with orbital angular momentum L = 1 and (proton) spin
S = ±1/2 according to

|1/2, 1/2〉 =

√
2

3
|1, 1〉|1/2,−1/2〉 −

√
1

3
|1, 0〉|1/2, 1/2〉, (3)

|1/2,−1/2〉 = −
√

2

3
|1,−1〉|1/2, 1/2〉 +

√
1

3
|1, 0〉|1/2,−1/2〉, (4)

using the Clebsch-Gordon coefficients from https://pdg.lbl.gov/2002/clebrpp.pdf.

The initial Jz = ±1/2 states, and the decay final states are all distinguishable by the
proton spin component, so we have four amplitudes to consider,

α|0, 0〉|1/2, 1/2〉 − β

√
1

3
|1, 0〉|1/2, 1/2〉, (5)

β

√
2

3
|1, 1〉|1/2,−1/2〉, (6)

α|0, 0〉|1/2,−1/2〉 + β

√
1

3
|1, 0〉|1/2,−1/2〉, (7)

−β

√
2

3
|1,−1〉|1/2, 1/2〉, (8)

where α is the strength of the interaction with the L = 0 state, and β is the strength
of the interaction with the L = 1 state. We square amplitudes (5)-(8) and add to
find the angular distribution, noting that the orbital angular momentum states |L, Lz〉
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correspond to spherical harmonics Y Lz
L (θ, φ), where θ is the angle of, say, the decay

pion with respect to the z-axis in the Λ rest frame.

Y 0
0 =

√
1

4π
, Y ±1

1 = ∓
√

3

8π
sin θ e±iφ, Y 0

1 =

√
3

4π
cos θ. (9)

The four amplitudes (5)-(8) are then (after multiplying by
√

4π),

α − β

√
1

3
cos θ, −β

√
1

3
sin θ eiφ, α + β

√
1

3
cos θ, −β

√
1

3
sin θ e−iφ. (10)

Squaring, and adding, leads to the angular distribution

2 |α|2 +
2 |β|2

3
(sin2 θ + cos2 θ) = 2 |α|2 +

2 |β|2
3

= isotropic. (11)

We note that the target protons needed to be unpolarized so that the cases of Jz = ±1/2
for the initial state are equally likely, and the cross terms between different L in the
final π−p state cancel out. We assume this holds for the cases of higher possible Λ spin,
and consider than contributions to the angular distribution from different L separately.

2. JΛ = 3/2.

In this case the orbital angular momentum of the π−p final state can be L = 1 or 2
such that J = 3/2. If the Λ has Jz = 1/2 in its rest frame, then this couples to the
π−p final states with orbital angular momentum L = 1 and (proton) spin S = 1/2
according to

|3/2, 1/2〉 =

√
1

3
|1, 1〉|1/2,−1/2〉 +

√
2

3
|1, 0〉|1/2, 1/2〉, (12)

which implies an angular distribution proportional to

∣∣Y 1
1

∣∣2 + 2
∣∣Y 0

1

∣∣2 ∝ sin2 θ

2
+ 2 cos2 θ ∝ 3 cos2 θ + 1. (13)

Similarly, the coupling to the π−p final states with orbital angular momentum L = 2
is

|3/2, 1/2〉 =

√
3

5
|2, 1〉|1/2,−1/2〉 −

√
2

5
|2, 0〉|1/2, 1/2〉, (14)

which implies an angular distribution of

3
∣∣Y 1

2

∣∣2 + 2
∣∣Y 0

2

∣∣2 ∝ 3
15

2
sin2 θ cos2 θ + 2

5

4
(3 cos2 θ − 1)2 ∝ 3 cos2 θ + 1, (15)

noting that

Y 1
2 = −

√
15

8π
sin θ cos θ eiφ, Y 0

2 =

√
5

16π
(3 cos2 θ − 1). (16)

Thus, either value of L for the π−p final states leads to the same angular distribution,
namely 3 cos2 θ + 1.
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3. JΛ = 5/2.

In this case the possible orbital angular momenta of the final π−p states are L = 2 and
3.

We content ourselves with calculating only L = 2.

|5/2, 1/2〉 =

√
2

5
|2, 1〉|1/2,−1/2〉 +

√
3

5
|2, 0〉|1/2, 1/2〉, (17)

which implies an angular distribution of

2
∣∣Y 1

2

∣∣2 + 3
∣∣Y 0

2

∣∣2 ∝ 2
15

2
sin2 θ cos2 θ + 3

5

4
(3 cos2 θ − 1)2 ∝ 5 cos4 θ − 2 cos2 θ + 1. (18)
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