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1 Problem

An electron of mass m and charge e moves in an isotropic three-dimensional harmonic
potential with “spring constant” K such that its trajectory is nearly circular at all times.
What is the characteristic time (time constant) for the decay of the energy of the system
due to electromagnetic radiation according to a classical analysis?

What condition(s) must be satisfied so that the fraction of the energy radiated per period
of the motion is small (i.e., so that the quality factor of this oscillator remains high), and
hence the trajectory is indeed nearly circular? Recall that the quantity r0 = e2/mc2, where
c is the speed of light, can be identified as the classical charge radius of the electron (in
Gaussian units).

Verify that this requirement implies that the radiation-reaction force is small compared
to the spring force on the electron.

It is not obvious that a classical system can be expected to satisfy these desirable re-
quirements at all times. Nature avoids this difficulty by being quantum mechanical.

Supposing the motion of the charge to be nonrelativistic, show that the behavior of a
quantum oscillator is such that the classical conditions for adiabatic damping are always
satisfied.

Discuss also the case of relativistic motion. The essential quantum behavior here is
contained in the insights of Hawking [1] and Unruh [2], the quantum “vacuum” appears to
an accelerated observer to act like a thermal bath of temperature T related by kT = �a�/2πc,
where a� is the acceleration in the (instantaneous) rest frame of the particle, � is Planck’s
constant, and k is Boltzmann’s constant. For what radius of the electron’s orbit does this
relation imply that the thermal bath can in effect supply the energy radiated by the electron,
such that the radius shrinks no further (and a laboratory observer considers the electron to
have ceased radiating)?

2 Solution

2.1 Nonrelativistic Analysis

So long as the velocity v of the electron is small compared to c, the radiation is primarily
dipole radiation, whose rate is given by the Larmor formula:

dU

dt
= −2

3

e2a2

c3
, (1)

where a is the acceleration of the particle.
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For motion in a circle of radius r in a harmonic potential of spring constant K, Newton
tells us that F = ma = Kr. Hence,

a =
Kr

m
(2)

so that
dU

dt
= −2

3

e2K2r2

m2c3
. (3)

The energy U consists of the potential energy Kr2/2 plus the kinetic energy mv2/2 =
(mr/2)(v2/r) = mra/2 = Kr2/2, so that

U = Kr2 (4)

(which is consistent with the virial theorem for bounded motion in a central potential). Thus,
the differential equation for the time dependence of the energy is

dU

dt
= −2

3

e2K

m2c3
U = −2

3

e2

mc3

K

m
U = − 2

3c
r0ω

2U, (5)

where r0 = e2/mc2 is the so-called classical electromagnetic radius of the electron, and
ω =

√
K/m is the angular frequency of the motion.

The solution to this equation is exponential decay of the energy, U = U0e
−t/τ , where the

time constant τ is

τ =
3c

2r0ω2
. (6)

The condition for adiabatic decay with near-circular motion at all times is that τ be large
compared to the period 2π/ω. Thus, we desire

c

r0ω2
� 1

ω
, and so ω � c

r0
. (7)

It is more insightful to multiply this by the radius r of the electron’s orbit, and to note that
the velocity is v = ωr, so the condition becomes

v

c
� r

r0
. (8)

This is fine so long as r > r0, but we seem to be heading towards the conclusion that
a classical analysis is doubtful for oscillations whose amplitude is less than the classical
electron radius.

This impression is reinforced by consideration of the (Abraham-Lorentz) radiation reac-
tion force,1 which we recall to be Freaction = (2/3c3)e2da/dt. It seems reasonable to expect
that the reaction force be smaller than the drive force that causes it, which is the spring
force Kr in the present problem.

1The radiation reaction force can be deduced from the relation between force and power, Freaction · v =
dU/dt. In an example like the present case involving (nearly) uniform circular motion, the reaction force
opposes the (nearly constant) velocity, and we can write Freaction = −(1/v)dU/dt = 2e2aω/3c3, noting that
a/v = v2/rv = v/r = ω.
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Now, for uniform circular motion with angular velocity ω the rate of change of kinematic
vectors such as r, v and a is dr/dt = ω×r, dv/dt = ω×v and da/dt = ω×a. In particular,
the magnitude of the rate of change of the acceleration is |da/dt| = ωa, so the magnitude of
the radiation reaction force is

Freaction =
2

3c3
e2ωa =

2

3c3
e2ω

Kr

m
. (9)

The condition that this force be small compared to the spring force Kr is

e2

mc2

ω

c
=

r0ω

c
� 1. (10)

This is identical to the condition (7) found above that the motion be near circular at all
times.

While we might not be troubled by classical motion that departs from the adiabatic
condition of near-circular motion, a prediction that the radiation reaction force can exceed
the drive force that causes it seems very odd.

It appears that Nature will never exhibit this oddity, if we take quantum behavior into
account. In particular, the minimum energy quantum state of a three-dimensional harmonic
oscillator is not zero, but rather U0 = 3�ω/2. The wave function of this state has a finite
extent, and is proportional to e−r2/2(�/mω). The characteristic spatial extent σr of this state
is therefore

σ2
r =

�

mω
=

(
�

mc

)2
mc2

�ω
= λ2

C

mc2

�ω
, (11)

where λC = �/mc is the Compton wavelength of the electron.2 So long as the quantum
ground state of the oscillator has energy small compared to the rest energy of an electron
(so that nonrelativistic quantum theory applies), we find that

σr > λC =
�

mc
=

e2

mc2

�c

e2
=

r0

α
, (12)

where α = e2/�c is the fine-structure constant. For elementary particles such as an electron
or proton, α = 1/137, and the spatial extent of the quantum ground state is large compare to
the classical charge radius. Thus, quantum effects “protect” the amplitude of the particle’s
motion to have values larger than those for which the validity of a classical analysis becomes
doubtful.

2.2 Relativistic Analysis

According to eq. (11), this quantum “protection” might not hold if �ω � mc2, i.e., if the
oscillator is so strong that the motion of the charge is relativistic.

First, we consider the classical behavior of an electron in a very strong harmonic potential.

2Equation (11) for σr is, of course, consistent with the uncertainty principle that σ2
rσ

2
p ≈ �

2, noting that
σ2

p ≈ p2 ≈ mU0 ≈ �mω.
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In the instantaneous rest frame of the electron, denoted by a �, the Larmor formula (1)
holds,

dU�

dt�
= −2

3

e2a�2

c3
, (13)

An unusual, but insightful, way of seeing this is to apply the equivalence principle to
Hawking radiation [1], following Unruh [2], which tells us that the interaction of the accel-
erating particle with the quantum mechanical vacuum is as if the particle were immersed in
a thermal bath of temperature T related by kT = �a/2πc. We can consider the effective
thermal bath seen by an accelerating electron to be a kind of radiation reaction not predicted
in the classical theory.

The oscillating/accelerating electron cannot radiate away all of its energy because its
interaction with the quantum vacuum causes it to absorb energy that continually re-excites
the electron’s oscillations. The thermal character of the Hawking-Unruh effect advises us
that the particle will achieve a kind of thermal equilibrium when the effect (absorption of
energy from the quantum vacuum) equals the cause (internal energy of the accelerating
system), but the effect will never exceed the cause.

The condition of thermal equilibrium is, of course,

kT = U = Kr2, (14)

so together with the Hawking-Unruh relation we find

Kr2 =
�a

2πc
=

�Kr

2πmc
, (15)

and so the equilibrium radius is given by

r =
�

2πmc
=

λC

2π
. (16)

Now the Compton wavelength λC = �/mc is related to the classical charge radius by r0 =
αλC, where α = e2/�c is the fine-structure constant. For elementary particles such as
an electron or proton, α = 1/137 and the classical charge radius is small compared to
the Compton wavelength. Thus, quantum effects “protect” the amplitude of the particle’s
motion to have values larger than those for which the validity of a classical analysis becomes
doubtful.

The Hawking-Unruh argument finds a laboratory realization in electron storage rings (as
used for synchrotron light sources), where a system of magnets provides a harmonic confining
potential for motion transverse to the ring. The accelerated electrons do radiate, and the
amplitude of their transverse oscillations does decrease with time. But this amplitude does
not shrink to zero; rather it approaches a nonzero equilibrium value, the so-called quantum
limit to synchrotron radiation damping. The technical details are slightly more complicated
than in the present example, because the acceleration due to the circular motion of an
electron in a storage ring is typically larger than its acceleration in the confining potential
[3]
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