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1 Problem

A cylinder of radius a and (relative) dielectric constant € is placed along the z axis in an
electric field whose form is E; = Eyx+ E1[(z/a)x — (y/a)y] before the wire is placed in that
field. The medium surrounding the wire is a liquid with relative dielectric constant € # 1.
The form of the initial electric field has been chosen so that there will be a force on the
induced polarization due to the nonuniform field E; = E1[(z/a)x — (y/a)y]. You need NOT
calculate that force, but do give expressions for the total electric field E, the displacement
field D, and the polarization density P everywhere.

2 Solution

A solution to the extended version of this problem, cast in terms of magnetism rather than
electricity, is at http://kirkmcd.princeton.edu/examples/permeable_wire.pdf

We adopt a coordinate system in which the axis of the wire is the z.

Because we are dealing with dielectric media with nonzero polarization P, both the
electric fields E and D = E + 47P = ¢E are of utility. The initial external field is

E; = Eox + E, <2§< - %5’) ) D; = €E;, (1)
where €’ is the dielectric constant of the medium surrounding the cylinder. When the cylinder
is placed into this medium, we expect a polarization force in the +x direction due to the
nonuniform field E; that increases with z.

In addition to the rectangular coordinate system (z,y, z), we will work in a cylindrical
coordinate system (r, 6, z). The usual transformation of the units vectors between these two
coordinate systems are

% = cosOf — sin 66, ¥ = sin Of + cos 66, (2)

and X
r = cos X + sin 0y, 0 = —sin 6x + cos dy. (3)

In static dielectric media the electric field E obeys V x Ej,q = 0, so it may written as
Einga = —V¢ in terms of a scalar potential ¢ that obeys Laplace’s equation, V¢ = 0.
The external field (1) can be regarded as due to the scalar potential
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The external field induces additional terms in the scalar potential that also vary as cos# or
cos 20, since these are two of the set of orthogonal functions in which the scalar potential
¢(r,0) can be expanded. In particular, we can write
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which is continuous at » = a. The fields obey the additional matching condition that the
radial component D, = eF, of the displacement field is continuous at r = a (since V-D = 0).
As we have different dielectric constants € for r < a and € for r > a, the condition is that
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and hence,
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The equality holds separately for the coefficients of the orthogonal functions cos # and cos 26,
so that
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Of course,
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These forms obey the matching conditions that D, and Ejy are continuous at the boundary
r = a. Similarly, polarization is given by
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