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When heat flows from a hotter body to a colder one, energy is transferred from the
former to the latter. According to Einstein, this implies that the mass of the hotter body
is reduced while that of the colder body increases. This transfer of mass in time between
different regions of space suggests that some momentum is involved.

Already in 1900, Poincaré [1] argued that the flux of energy in the electromagnetic field,
described by the Poynting vector S, is associated with a density of momentum S/c2 in the
electromagnetic field.

This type of relation is more general, as first discussed by Planck (1908, p. 829 of [2]),
who argued that a flow q (with dimensions of energy per unit area per unit time) of heat is
associated with a momentum density p = q/c2, where c is the speed of light in vacuum.1 The
factor 1/c2 suggests that this very small momentum density could be called “relativistic”,2

as well as “hidden”.
The concept of “hidden” momentum has been reviewed by the author in [7], where the

“hidden” momentum of a subsystem is advocated to be

Phidden ≡ P− Mvcm −
∮

boundary

(x − xcm) (p− ρvb) · dArea = −
∫

f0

c
(x− xcm) dVol, (1)

where P is the total momentum of the subsystem, M = U/c2 is its total “mass”, U is its
total energy, xcm is its center of mass/energy, vcm = dxcm/dt, p is its momentum density,
ρ = u/c2 is its “mass” density, u is its energy density, vb is the velocity (field) of its boundary,
and,

fμ =
∂Tμν

∂xν
= ∂0T

μ0 + ∂jT
μj, (2)

is the 4-force density exerted on the subsystem by the rest of the system, with Tμν being the
stress-energy-momentum 4-tensor of the subsystem, and xν = (ct,x).

One type of heat flow is via radiant (electromagnetic) energy, which involves transfer of
photons, that we readily associate with momentum. Here, we consider a case (also discussed
in [9]) where radiant heat transfer is assumed to be negligible. Two heat reservoirs (with

1This type of relation was discussed by Eckart on p. 923 of [4], endorsed by Feynman in Sec. 27.6 of [5],
and attributed to Planck [2] by Møller in eq. (13) of [6].

2The density uthermal of thermal energy makes a contribution to the mass of mthermal = uthermal/c2.
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large but not infinite internal energy) at temperatures T1 > T2 are connected by a bar that
supports heat flow q = q ŷ, which we approximate as uniform inside the bar, as sketched on
the previous page. The heat reservoirs are so large that the rate q of the heat flow can be
approximated as constant in time.

We now consider whether the subsystem of the bar contains “hidden” momentum, be-
ginning our discussion in the rest frame of the system (in which the bar is at rest).

Since we ignore radiation, the stress-energy momentum 4-tensor3 is purely “mechanical”,

Tμν =

⎛
⎝ u cp

cp −T ij

⎞
⎠ , (3)

where indices μ and ν take on values 0, 1, 2, 3, spatial indices i and j take on values 1, 2, 3,
ρ = u/c2 is the mass density of the bar, and T ij is the “mechanical 3-stress tensor.

For a solid bar that is constrained by the heat reservoirs to have a constant length d in y,
but with no constraints on the bar in x or z, the only nonzero component of the mechanical
stress tensor is Tyy = σ = Eα(T1−T2), where E is the Young’s modulus and α is the thermal
expansion coefficient.4 Then, all components of Tμν are constant, and the 4-force density
inside the bar is zero,

fμ = (0, 0, 0, 0). (4)

and there is no “hidden” momentum in the bar (in its rest frame) according to the second
form of eq. (1), since f0 = 0.

We can also consider an inertial frame (the ′ frame) in which the bar has nonzero velocity
v with respect to the rest frame ( for which the boost from the rest frame has velocity −v).
But, since the 4-force density is zero in the rest frame, it is also zero in any other inertial
frame,

f ′ 0 = (0, 0, 0, 0), (5)

and according to eq. (1) there is no “hidden” momentum in any inertial frame.
This result disagrees with a claim in [9] that the “hidden” mommentum is nonzero in an

inertial frame in which the bar has velocity v x̂.5 It seems that the 4-force density was not
carefully computed in that paper.

1 Discussion

If this system is closed and isolated, with no radiative heat transfer, its total momentum is
constant, and there exists an inertial frame in which the total momentum is zero and the
center of mass of the system is at rest. However, this frame is not the instantaneous rest
frame of the system, as in the latter the center of mass of the system moves (very slowly) in
the +y-direction.

3See, for example, Secs. 32-33 of [8].
4See, for example https://en.wikipedia.org/wiki/Thermal_stress
5Other comments by the present author related to the example of [9] are at [10].
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As noted above, there exists a momentum density q/c2 associated with heat flux flux q,
and we can assign a velocity to the flux according to

vheat flow =
q

uheat
, (6)

where uheat is the density of thermal (heat) energy.6 In the present example, the temperature
inside the bar varies in y, so we assign a nonzero velocity (and momentum) to the heat flow
at most points inside the bar in any inertial frame.

If we accept the claim that a heat flow q is associated with a momentum density p = q/c2

in the rest frame of the bar, and also that we may neglect radiative heat transfer in the present
example, then it seems that we know the stress-energy-momentum tensor (3) of the bar in its
(inertial) rest frame. We then consider that there is no “hidden” momentum in this frame.
And, as we can transform the stress-energy momentum tensor into any other inertial frame,
it we also consider that there is no “hidden” momentum in any such frame.

The stress-energy-momentum tensor T′ in a frame where the system has velocity v =
v ŷ with respect to its rest frame is related by T′ = LyTLy where the (tensor) Lorentz
transformation Ly is

Lμν
y =

⎛
⎜⎜⎜⎜⎜⎜⎝

γ 0 γβ 0

0 1 0 0

γβ 0 γ 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

≈

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 β 0

0 1 0 0

β 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (7)

where β = v/c and γ = 1/
√

1 − β2, and the approximation holds for v � c, which suffices
here. We find

TLy ≈

⎛
⎜⎜⎜⎜⎜⎜⎝

u 0 q/c 0

0 0 0 0

q/c 0 σ 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 β 0

0 1 0 0

β 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

u + βq/c 0 q/c + βu 0

0 0 0 0

q/c + βσ 0 σ + βq/c 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(8)

T′ = LyTLy ≈

⎛
⎜⎜⎜⎜⎜⎜⎝

u + 2βq/c 0 q/c + β(u + σ) 0

0 0 0 0

q/c + β(u + σ) 0 σ + 2βq/c 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (9)

6The idea that an energy flux vector is the product of energy density and energy flow velocity seems to
be due to Umov [11], based on Euler’s continuity equation [12] for mass flow, ∇ · (ρv) = −∂ρ/∂t.

For an electromagnetic example, see Sec. 2.1.4 of [13].
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The momentum density inside the bar in the ′ frame is

p′ =
T′ 0y

c
ŷ ≈

(
u′v
c2

+
σv

c2
+

q

c2

)
ŷ =

(
ρ′v +

σv + q

c2

)
ŷ ≈ ρ′v ŷ, (10)

where u′ = T′ 00 = u + 2qv/c2 and ρ′ = u′/c2 is the mass density in ′ frame.

We could also suppose that the “bar” is a can of gas. If the gas had uniform pressure P ,
its “mechanical” 3-stress tensor would be T ij = −P δij. In the present example, we might
suppose the pressure is independent of x and z but varies linearly with y according to

P = P1 − P1 − P2

d
y ≡ P1 − Ky with K =

P1 − P2

d
> 0, (11)

for a bar of length d with pressure P1 at its warmer end y = 0 and P2 < P1 at its cooler end
y = d. If the “mechanical” stress tensor had the form T ij = −P δij with P as in eq. (11),
then the 4-force density (2) would be

fμ = (0, 0,−K, 0), (12)

which is nonzero throughout the bar. However, this does not make physical sense, as a bar
at rest cannot have a nonzero internal force density.
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