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1 Problem

This note was originally a letter to David Jackson. His response is in [25].

The usual lore of electrodynamics gives us two approaches to the calculation of the
interaction energy /momentum of a charged particle in an external electromagnetic field.

We should expect these two approaches to be equivalent, and indeed they are in all the
examples that I have tried. Yet, the formal equivalence of these two approaches is never
discussed, to my knowledge, in the literature.

I will label these two approaches as “Maxwell” and “Poynting”.

Maxwell: The canonical 4-momentum P, of a particle of electric charge e and mechanical
4-momentum p,, in an external electromagnetic field with 4-potential Afj‘t is given by
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It seems a reasonable interpretation that the term eAf™/c be regarded as the interaction
energy /momentum of the particle in the external field.

Poynting: The electromagnetic energy Ugy and momentum Pgy of an electromagnetic
field (ignoring effects of macroscopic media) are given by
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For a single charge e in an external field, we write E = E, + E.«, B = B, + By, and the
interaction parts of the electromagnetic energy and momentum are
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Equivalence between eqs. (2) and (3) requires that
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and
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This is to be true independent of the motion of the charge!
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I check the equivalence for the case of a charge that moves slowly with constant velocity
v, where v < ¢. The charge is at the origin at the time of the calculation. Then,
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Of course, the external fields can be related to the corresponding potentials by
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As the particle is moving, the derivative 0A.x/0t should be replaced by the convective

derivative:
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Then, the interaction energy of eq. (3) is
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In the above, we have supposed that we work in the Coulomb gauge so that we may set
V - Aot = 0, and we note that for » much larger than the length scale of the sources of the
external fields the longitudinal part of the vector potential falls off at least as fast as 1/r?.

It seems that we obtain an equivalence between the electromagnetic energies of egs. (2)
and (3) only if the charge is at rest.

We now turn to the interaction momentum. I rewrite eq. (3) as
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We would like to show that Py = eAq/c and that Py = 0.

Using various vector calculus identities, and working in the Coulomb gauge, the argument
of integral Py can be written as
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I hope I have made a mistake, because the 2nd term in the last line of eq. (14) appears to
be nonzero.
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For the integral P, we have
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recalling that we are working in Coulomb gauge. Very odd!

A different approach to the calculation of the interaction momentum follows Page and
Adams [11]. We first suppose that the external fields are due to a single charge ¢’. We work
only to accuracy 1/c?, and convert the Lienard-Wiechert fields [12, 13] of the charges from
retarded quantities into present quantities.

Then the interaction momentum of the fields is
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In the same approximation (first employed by C.G. Darwin [20], the vector potential at
charge e due to charge €’ is
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Hence, the interaction momentum (16) can also be written as
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If the external fields are due to a collection of charges {e'} then the interaction momentum,
to accuracy 1/c? is

Prrint = —Aext(at €) + Z c(at e (19)
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