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1 Problem

This note was originally a letter to David Jackson. His response is in [25].

The usual lore of electrodynamics gives us two approaches to the calculation of the
interaction energy/momentum of a charged particle in an external electromagnetic field.

We should expect these two approaches to be equivalent, and indeed they are in all the
examples that I have tried. Yet, the formal equivalence of these two approaches is never
discussed, to my knowledge, in the literature.

I will label these two approaches as “Maxwell” and “Poynting”.

Maxwell: The canonical 4-momentum Pµ of a particle of electric charge e and mechanical
4-momentum pµ in an external electromagnetic field with 4-potential Aext

µ is given by

Pµ = pµ +
e

c
Aext

µ . (1)

It seems a reasonable interpretation that the term eAext
µ /c be regarded as the interaction

energy/momentum of the particle in the external field.

Poynting: The electromagnetic energy UEM and momentum PEM of an electromagnetic
field (ignoring effects of macroscopic media) are given by

UEM =

∫
E2 + B2

8π
dVol, PEM =

∫
E × B

4πc
dVol. (2)

For a single charge e in an external field, we write E = Ee + Eext, B = Be + Bext, and the
interaction parts of the electromagnetic energy and momentum are

UEM,int =

∫
Ee · Eext + Be · Bext

4π
dVol, PEM,int =

∫
Ee × Bext + Eext ×Be

4πc
dVol. (3)

Equivalence between eqs. (2) and (3) requires that

eφext(re) =

∫
Ee · Eext + Be · Bext

4π
dVol, (4)
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and

eAext(re) =

∫
Ee × Bext + Eext × Be

4π
dVol. (5)

This is to be true independent of the motion of the charge!

I check the equivalence for the case of a charge that moves slowly with constant velocity
v, where v � c. The charge is at the origin at the time of the calculation. Then,

Ee = e
r̂

r2
= −e∇1

r
, Be =

e

c
v × r̂

r2
= −e

c
v ×∇1

r
=

e

c
∇× v

r
. (6)

Of course, the external fields can be related to the corresponding potentials by

Eext = −∇φext −
1

c

∂Aext

∂t
, Bext = ∇ × Aext. (7)

As the particle is moving, the derivative ∂Aext/∂t should be replaced by the convective
derivative:

∂Aext

∂t
→ ∂Aext

∂t
+ (v · ∇)Aext. (8)

Then, the interaction energy of eq. (3) is

UEM,int =

∫
Ee · Eext + Be · Bext

4π
dVol

=
e

4π

∫
∇1

r
· ∇φext dVol +

e

4πc

∫
∇1

r
· ∂Aext

∂t
dVol

− e

4πc

∫
r̂

r2
· (v · ∇)Aext dVol +

e

4πc

∫
v × r̂

r2
· ∇ × Aext dVol

= − e

4π

∫
∇ · φextr̂

r2
dVol − e

4π

∫
φext∇2 1

r
dVol

+
e

4πc

∂

∂t

∫
∇ · Aext

r
dVol − e

4πc

∂

∂t

∫ ∇ · Aext

r
dVol

− e

4πc

∫
r̂

r2
· (v · ∇)Aext dVol

+
e

4πc

∫
r̂

r2
· (v ·∇)Aext dVol − e

4πc

∫
r̂

r2
· ∇(v · Aext) dVol

= − e

4π

∮
φextr̂

r2
· dArea + e

∫
φextδ

3(r) dVol

+
e

4πc

∂

∂t

∮
Aext

r
· dArea− e

4πc

∂

∂t

∫ ∇ · Aext

r
dVol

− e

4πc

∫
∇ · (v · Aext)

r̂

r2
dVol − e

4πc

∫
(v ·Aext)∇2 1

r
dVol

= eφext(0) −
e

4πc

∮
(v · Aext)

r̂

r2
· dArea +

e

c

∫
(v · Aext)δ

3(r) dVol

= eφext(0) +
e

c
v · Aext(0). (9)
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In the above, we have supposed that we work in the Coulomb gauge so that we may set
∇ · Aext = 0, and we note that for r much larger than the length scale of the sources of the
external fields the longitudinal part of the vector potential falls off at least as fast as 1/r2.

It seems that we obtain an equivalence between the electromagnetic energies of eqs. (2)
and (3) only if the charge is at rest.

We now turn to the interaction momentum. I rewrite eq. (3) as

PEM,int = P1 + P2, (10)

where

P1 =

∫
Ee × Bext

4πc
dVol = − e

4πc

∫
∇1

r
× (∇ ×Aext) dVol, (11)

and

P2 =

∫
Eext ×Be

4πc
dVol = − e

4πc

∫
Eext ×

(
v

c
× ∇1

r

)
dVol (12)

We would like to show that P1 = eAext/c and that P2 = 0.

Using various vector calculus identities, and working in the Coulomb gauge, the argument
of integral P1 can be written as

∇1

r
× (∇ ×Aext) = ∇

(
∇1

r
· Aext

)
− Aext ×

(
∇ × ∇1

r

)
−

(
∇1

r
· ∇

)
Aext − (Aext · ∇)∇1

r

= ∇
(

∇1

r
·Aext

)
+ ∇×

(
∇1

r
× Aext

)
− (∇ · Aext)∇1

r
+ Aext∇2 1

r
− 2(Aext · ∇)∇1

r

= −∇
(

Aext · r̂
r2

)
− ∇ ×

(
r̂

r2
× Aext

)
− 4πAextδ

3(r) + 2(Aext · ∇)
r̂

r2
. (13)

Hence,

P1 =
e

4πc

∫
∇

(
Aext · r̂

r2

)
dVol +

e

4πc

∫
∇ ×

(
r̂

r2
× Aext

)
dVol

+
e

c

∫
Aextδ

3(r) dVol − e

2πc

∫
(Aext · ∇)

r̂

r2
dVol

=
e

4πc

∮ (
Aext · r̂

r2

)
dArea +

e

4πc

∮
dArea ×

(
r̂

r2
× Aext

)

+
e

c
Aext(0) +

e

2πc

∫
(3Aext · r̂)r̂ − Aext

r3
dVol

=
e

c
Aext(0) +

e

2πc

∫
(3Aext · r̂)r̂− Aext

r3
dVol. (14)

I hope I have made a mistake, because the 2nd term in the last line of eq. (14) appears to
be nonzero.
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For the integral P2 we have

P2 = = − ev

4πc2

∫
Eext · ∇1

r
dVol − e

4πc

∫ (
Eext · v

c

)
∇1

r
dVol

= − ev

4πc2

∫
∇ · Eext

r
dVol +

ev

4πc2

∫ ∇ · Eext

r
dVol +

e

4πc

∫ (
Eext · v

c

) r̂

r2
dVol

= − ev

4πc2

∮
Eext

r
· dArea +

ev

c2

∫
ρext

r
dVol +

e

4πc

∫ (
Eext · v

c

) r̂

r2
dVol

=
evφext(0)

c2
+

e

4πc

∫ (
Eext · v

c

) r̂

r2
dVol, (15)

recalling that we are working in Coulomb gauge. Very odd!

A different approach to the calculation of the interaction momentum follows Page and
Adams [11]. We first suppose that the external fields are due to a single charge e′. We work
only to accuracy 1/c2, and convert the Lienard-Wiechert fields [12, 13] of the charges from
retarded quantities into present quantities.

Then the interaction momentum of the fields is

PEM,int =
1

4πc

∫
(Ee ×Be′ + Ee′ × Be) dVol =

ee′

4πc2

∫
r̂e′ × (ve × r̂e) + r̂e × (ve′ × r̂e′)

r2
er

2
e′

dVol

=
ee′

2c2ree′
[v + v′ + ((v + v′) · r̂ee′)r̂ee′ ]. (16)

In the same approximation (first employed by C.G. Darwin [20], the vector potential at
charge e due to charge e′ is

Ae′(at e) =
e′

2cree′
[v′ + (v′ · r̂ee′)r̂ee′ ]. (17)

Hence, the interaction momentum (16) can also be written as

PEM,int =
e

c
Ae′(at e) +

e′

c
Ae(at e′). (18)

If the external fields are due to a collection of charges {e′} then the interaction momentum,
to accuracy 1/c2 is

PEM,int =
e

c
Aext(at e) +

∑
e′

e′

c
Ae(at e′). (19)
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