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Section 1 of the 1897 paper by Pocklington [1] seeks a solution to the wave equation for
the electric field E in free space outside a conductor:

∇2E =
1

c2

∂2E

∂t2
, (1)

noting also that
∇ · E = 0, (2)

and that the electric field is perpendicular to the surface of a good/perfect conductor.
In section 2, Pocklington notes that eq. (1) has solutions that are spherical waves ema-

nating from the origin. In the spirit of Hertz, he states this solution as related to a scalar
potential Π that is in some way a generalization of the scalar potential φ = 1/r that solves
Laplace’s equation ∇2φ = 0 in electrostatics. The wave version of φ is

Π =
ei(kr−ωt)

r
, (3)

where k = 2π/λ and ω = 2π/T = 2πc/λ. We should note that

∇2Π =
1

c2

∂2Π

∂t2
= −k2Π. (4)

Then, the fields

Ex =
∂2Π

∂x∂z
, Ey =

∂2Π

∂y∂z
, Ez =

∂2Π

∂z2
+ k2Π, (5)

satisfy both eqs. (1) and (2). In particular,

∇ ·E =
∂Ex

∂x
+

∂Ey

∂y
+

∂Ex

∂y
=

∂3Π

∂x2∂z
+

∂3Π

∂y2∂z
+

∂3Π

∂z3
+ k2 ∂Π

∂z

=
∂

∂z
∇2Π + k2∂Π

∂z
= −k2∂Π

∂z
+ k2∂Π

∂z
= 0 (6)

Pocklington knew from Hertz that the fields (5) can be thought of as due to the a charge
near the origin that moves in very small oscillations along the z axis. He now wants to
consider the possibility of oscillations along some other direction, say along the s axis. So,
he rewrites eq. (5) as

E = ∇∂Π

∂s
+ k2Π ŝ, (7)

which still satisfies both eqs. (1) and (2).

1



He now supposes that the oscillating charges are distributed along a curving wire, where
s is the distance along that wire. He takes function f(s) as a measure of the current in the
wire at position s, and integrates eq. (7) along the wire to find

E = ∇
∫

dsf(s)
∂Π

∂s
+ k2

∫
dsf(s)Π ŝ. (8)

The distance r used in the function Π is now the distance to the observer from the point on
the wire, rather than the distance from the origin.

He then integrates the first term by parts (and ignores the contributions from the ends of
the wire since the current is zero if the wire is open ended = dipole antenna, or the current
is the same at both “ends” if the wire forms a loop), yielding

E = −∇
∫

ds
df(s)

ds
Π + k2

∫
dsf(s)Π ŝ. (9)

This note has been expanded upon in [2].
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