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1 Problem

What is the electric field outside an electrically neutral, sphere of uniform magnetization
density M0 that rotates with constant angular velocity ω ‖ M0?

2 Solution

This solution follows [1, 2]. A slightly different analysis by the present author is at [3].
We consider a sphere of radius R, centered at the origin of the inertial (lab) frame,

with uniform magnetization density M0 = M0 ẑ in its inertial rest frame, that rotates with
constant angular velocity ω = ω ẑ with respect to the lab frame. We also suppose that the
surface velocity at the equator, v = ωR is small compared to the speed c of light in vacuum.
The sphere has unit relative permittivity, ε = 1 in Gaussian units (which will be used in this
note), and the exterior of the sphere is vacuum.

A volume element of the sphere at distance � from the z-axis has velocity v = ω� φ̂ in
the lab frame, and in a cylindrical coordinate system (�, φ, z). In the instantaneous inertial
rest frame of this volume element, the magnetization density is M0 = m0 ẑ, and the electric
polarization density is P0 = 0.

The Lorentz transformation of the electric and magnetic polarization densities from the
instantaneous inertial rest frame of the volume element to the lab frame is, for v � c,

P = γ
(
P0 +

v

c
× M0

)
− (γ − 1)(v̂ · P0) v̂ ≈ P0 +

v

c
× M0 =

v

c
× M0 =

ω�M0

c
�̂ (1)

M = γ
(
M0 − v

c
× P0

)
− (γ − 1)(v̂ · M0) v̂ ≈ M0 − v

c
× P0 = M0. (2)

See, for example, [4]. In the lab frame the magnetization density M equals M0 and so is
static. Hence the magnetic field B is as given in, for example, Sec. 5.10 of [5],

B(r < R) =
8π

3
M =

8πM0

3
ẑ, B(r > R) =

3(m · r̂) r̂ − m

r3
, (3)

with B uniform inside the sphere, while outside the sphere B is equal to that of a “point”
magnetic dipole m = 4πR3M0/3 = 4πR3M0 ẑ/3 at the origin, in a spherical coordinate
system (r, θ, φ) based on the z-axis.

The electric-polarization density P in the lab frame is associated with a (constant) bound
electric-charge density inside the sphere,

ρbound(r < R) = −∇ · P = −1

�

∂

∂�
(�P�) = −2ωM0

c
, (4)
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as well as with a bound surface-charge density

σbound = P · r̂ =
ω�M0

c
�̂ · r̂ =

ω�M0 sin θ

c
=

ωM0R sin2 θ

c
, (5)

noting that � = R sin θ on the surface of the sphere.
The total bound electric charge inside the rotating, magnetized sphere is

Qin =
4πR3

3
ρbound = −8πR3ωM0

3c
. (6)

The total bound surface charge is

Qsurface = 2πR2

∫ π

0

sin θ dθ σbound =
2πR3ωM0

c

∫ π

0

sin3 θ dθ =
2πR3ωM0

c

[
cos3 θ

3
− cos θ

]π

0

=
8πR3ωM0

3c
= −Qin, (7)

using Dwight 430.30 [6]. The total bound electric charge is zero, as expected.1

The nonzero (static) electric field E in the lab frame associated with an electrically neu-
tral, nonconducting, rotating magnetized sphere can be computed from the (static) electric
scalar potential V and then computing E = −∇V − ∂A∂ct (as the vector potential A of
the static magnetization density M is independent of time, so ∂A∂t = 0.

We first note that the electric potential of a circular ring of uniformly distributed charge
q that is at (R, θ′, φ) in spherical coordinates can be expanded in a Legendre series as

V (r, θ, φ) = q

∞∑
n=0

rn
<

rn+1
>

Pn(cos θ′)Pn(cos θ), (8)

where r> (r<) is the larger (smaller) of r and R. See, for example, Sec. 3-3 of [5].
In the present example, the bound surface charge (5) can be regarded as a series of rings of

charge whose extent in θ′ is dθ′ with charge dq = 2πR sin θ′ dθ′ σbound = 2πR3ωM0 sin2 θ′ d cos θ′/c,
such that the electric potential associated with the surface charge is

Vσ(r, θ, φ) =
2πR3ωM0

c

∞∑
n=0

rn
<

rn+1
>

Pn(cos θ)

∫ 1

−1

sin2 θ′Pn(cos θ′) d cos θ′. (9)

With P0(x) = 1 and P2(x) = (3x2 − 1)/2 = (3x2 − P0)/2, we have x2 = (P0 + 2P2)/3, and

sin2 θ′ = 1 − cos2 θ′ = 1 − x2 = P0 − P0 + 2P2

3
=

2(P0 − P2)

3
. (10)

Hence,

Vσ(r, θ, φ) =
4πR3ωM0

3c

∞∑
n=0

rn
<

rn+1
>

Pn(cos θ)

∫ 1

−1

[P0(cos θ′) − P2(cos θ′)]Pn(cos θ′) d cos θ′

=
4πR3ωM0

3c

(
2

r>
P0(cos θ) − 2

5

r2
<

r3
>

P2(cos θ)

)
, (11)

1This also follows from Gauss’ law, Qin =
∫

ρ dVol = − ∫ ∇ · P dVol = − ∫
P · dArea = − ∫

σ dArea =
−Qsurface.
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recalling that

∫ 1

−1

Pm(x)Pn(x) dx =
2

2n + 1
δmn. (12)

For r > R, r> = r and r< = R, such that

Vσ(r > R, θ, φ) =
4πR3ωM0

3c

(
2

r
− 2

5

R2

r3

3 cos2 θ − 1

2

)
, (13)

Meanwhile, the electric scalar potential for Qin and r > R is simply Vρ(r > R) = Qin/r =
−8πR3ωM0/3cr, so the total electric potential for r > R is

V (r > R) = Vσ(r > R) + Vρ(r > R) =
4πR5ωM0

15c

1 − 3 cos2 θ

r3
. (14)

The electric field outside the rotating magnetized sphere has nonzero components

Er(r > R) = − ∂

∂r
V (r > R) =

4πR5ωM0

5c

1 − 3 cos2 θ

r4
=

3Bin

10

ωR

c

R4

r4
(1 − 3 cos2 θ) � Bin,(15)

Eθ(r > R) = −1

r

∂

∂θ
V (r > R) = −4πR5ωM0

5c

sin 2θ

r4
. (16)

The (weak) exterior electric field falls off as 1/r4, and is a quadrupole field. The exterior
electric field at the equator (θ = π/2) points outwards from the origin, while the exterior
electric field along the z-axis points inwards to the origin.

The nonzero exterior electric-field components in cylindrical coodinates are

E�(r > R) = Er sin θ + Eθ cos θ =
4πR5ωM0

5cr4
sin θ(1 − 5 cos2 θ) =

4πR5ωM0

5c

�

r5

(
1 − 5z2

r2

)
,(17)

Ez(r > R) = Er cos θ − Eθ sin θ =
4πR5ωM0

5cr4
(3 cos θ − 5 cos3 θ)

=
4πR5ωM0

5c

z

r5

(
3 − 5z2

r2

)
.(18)

The transformation of the electromagnetic fields from the inertial lab frame to the rotating
frame with angular velocity ω with respect to the lab frame is, for ω� � c (see, for example,
eq. (43) of [7])

B′ = B, E′ = E +
v

c
× B = E +

ω� φ̂

c
× B (19)

From eq. (3), the exterior magnetic field is, noting that r̂ = cos θ ẑ + sin θ �̂.

B′(r > R) =
4πR3M0

3r3
(3 cos θ r̂ − ẑ)

=
4πR3M0

3r3
[(3 cos2 θ − 1) ẑ + 3cos θ sin θ �̂] =

4πR3M0

3r3

[(
3z2

r2
− 1

)
ẑ +

3�z

r2
�̂

]
(20)
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Then,

ω� φ̂

c
× B(r > R) =

4πR3ωM0�

3cr3

[(
3z2

r2
− 1

)
�̂ − 3�z

r2
ẑ

]
, (21)

and the exterior electric field E′ in the rotating frame has �- and z-components

E ′
�(r > R) =

4πR5ωM0

5c

�

r5

(
1 − 5z2

r2

)
+

4πR3ωM0�

3cr3

(
3z2

r2
− 1

)

=
4πR3ωM0ρ

cr3

(
R2

5r2
− R2z2

r4
+

R2

3r2
− 1

3

)
=

4πR3ωM0ρ

cr3

(
8R2

15r2
− R2z2

r4
− 1

3

)
, (22)

E ′
z(r > R) =

4πR5ωM0

5c

z

r5

(
3 − 5z2

r2

)
− 4πR3ωM0�

2z

cr5

=
4πR3ωM0z

cr5

(
3R2

5
− R2z2

r2
− �2

)
. (23)

Most significantly, although the rotating frame is a rest frame for the magnetized sphere, the
electric field in this frame is nonzero. Further, the electric field in the rotating frame is more
complicated than in the lab frame, which is related to the “fictitious” charge distribution
ω ·H/2πc that appears to exist according to observers in the rotating frame (see, for example,
eq. (53) of [7]).

2.1 Rotating, Magnetized, Conducting Sphere

Most permanent magnets are conducting, so we also consider the case of a rotating, electri-
cally neutral, magnetized conducting sphere.

The total force on conduction electrons inside the sphere must be zero, and the force on
conduction electrons at the surface must be in the r̂ direction.

For steady motion, the velocity of a conduction electron of mass m and charge −e at �
inside a rotating sphere as described above has velocity v = ω×�. The force on the electron
is, ignoring gravity, that due to the Lorentz force and the centrifugal force

F = −e

(
Ein +

ω × �

c
× Bin

)
+ mω2� = −e

(
Ein +

8πωM0

3c
�

)
+ mω2� = 0, (24)

recalling eq. (3). Hence,

Ein = −8πωM0

3c
� +

mω2

e
�. (25)

The total charge density inside the rotating, conducting sphere is, noting that ∇ · � = 2,

ρtotal =
1

4π
∇ · Ein = −4ωM0

3c
+

mω2

2πe
= ρbound

(
2

3
− mω c

4πeM0

)
≡ Kρbound, (26)

recalling eq. (4). As such, the total surface charge on the electrically neutral, rotating,
conducting, magnetized sphere is Kσbound, and the exterior electric field is K times that of
eqs. (15)-(16), where

K =
2

3
− mω c

4πeM0
. (27)
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Even for a permanent magnet with Bin ≈ 1 T, K differs from 2/3 by only ≈ 1%.

2.2 Rotating, Magnetized Cylinder

In case of an infinite, electrically neutral, nonconducting cylinder of radius R and symmetry
axis z with uniform magnetization M0 ẑ in its inertial rest frame, when its steady rotation
about the z-axis is ω ẑ with respect to the inertial lab frame, its electric polarization density
ρ is again given by eq. (1) and its bound electric charge density is again uniform as given by
eq. (4). The bound charge per unit length along the cylinder is πR2ρ = −2πR2ωM0/c. Its
bound surface charge density is σ = P · �̂ = ωRM0/c, with surface charge Qsurface = 2πRσ =
2πR2ωM0/c per unit length along the cylinder. The total (bound) charge per unit length
along the rotating, magnetized cylinder is zero, and the exterior electric field is zero.

If the infinite, electrically neutral cylinder is conducting, there is a “correction” to the
above values of the volume charge density ρ and the surface charge density σ, but the
“correction” factor is the same for both. Hence, the exterior electric field is zero is this case
also.
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