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POLARTZATION PRECESSION

Many high energy experiments measure the spin polarization or other
quantities depending on the polarization of a particle. TIf the particle
passes through an electromagnetic field (e.g. a magnet spectrometer) the
spin may precess. We derive an expression for the precession for arbiltrary
fields, polarizations and particle velocities, Previous derivations of the

precessionl“5

are restricted to velocities either normal or parallel to the
magnetic field,

Rathér.than use the Dirac equationzia’d {or some relativistie wavé
equation for higher spin) to calculate the precession, we first consider the
(Instantaneous) rest frame of the particle, where non-relativistic wave

1,3 The results may then be transformed to the lab with

equations apply.
complete generality., However, if we construct a polarization four-vector

and transform 1t to the lab frame, the meaning of the various 1ab components

of the four-vector is unclear. One usually returns to the rest frame to
understand the polarization vector. Our apnroacﬁ is to always deal with

the physically meaningful rest frame polarization vector, but to use the
laboratory walues of all other quantities.

Let us il1lustrate that the rest framepolarization is indeed the physicallvy
meaningful quantity to a lab observer. .Consider the decavy of a polarized
particle. Calculations of the correlation between the polarization and
the decay angular distribution are always made in the rest frame of particle.

As another example consider the two bodvy scattering involving a spin 1/2

particle whose polarization 1is to be measured. The only parlty conserving
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obérator in the scattering amplitude involviﬁg the spiﬁ is 3 . ;, where n
is the normal to the scattering plane. Thus only the component of the spin
transverse to the particle's direction is‘significant. This component is
the same in the rest, 1ab and center of mass frames, so that calculating
spin direction in the particle's rest frame is valid.

> ‘
In the rest frame of the particle, then, the polarization, P, obeys

+
-+ >& ' . :
g—$=g-§r—anB (1)

where T = proper time

g = pyromagnetic ratio (g = 2(2,79) for protons)
[

e = charge

m = mass

B*= magnetic field in the rest frame
This equation follows from classical electromagnetism using the corres-
pondence principle,

We illustrate this for spin-1/2 particles. We take P = <33

> -+
a<d> _/ac do _ 1
Now, 3 .gz)and " [H.gj where H 1is the Hamiltonian. Since

we are in the rest frame, we mﬁy use the non-relativistic Hamiltonian.
The only part of the Hamiitonian for a free particle in an electromagnetic

ch

>+ >
field which does not commute with & is H'=- %«5— U+*B
m

Hence equation (1).
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The next step is to convert T and B to their corregponding values
a8 seen in the lab frame. We do not convert P to the lab frame as

mentioned. above. Let the Instantaneous 3-velocity of the particle be

E with respect to the lab frame and let B = lgl; Y = ~—l———; and

~ |/1-B
L #'ng = unit tangent to the particle's trajectory. The Lorentz

transformation from the rest frame to the frame glves

dT = = dt ‘ (@)

= |

where t is the time in the 1sb frame. Also
* - .
B ﬁll + 'Y('B’«L B x )

- > AA . .
where Bll (B * )2 15 the longitudinal part of the lab magnetic fileld:

~OA

,-.’
.ﬁL = % - (B * )2 ig the transverse part: and

-)-
E 1is the lab electric field. Thus

Ba e +v@® - G- 0P -88x B (3)

Substituting (2) and (3) inte (1), the precession in the rest frame is

at & Iy (4)

14 E-i?fx[ﬁ—(ﬁ-n)g_ﬁzxﬁ+$.(ﬁ-mz]

At this point, we should distinguish between two different "rest"
frames., The first, to be called the rest frame, is that frame in which the
particle is at rest:and in which in the absence of external torques the
spin would not precess. The second frame, to be called the comoving frame,

can be thought of as a succession of inertial frames each with

veloelty equal to the instantaneous particle veloctty and orientation
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tangent to the particle's direction. Of course the particle is at rest in
the comoving frame, so that the comoving and rest frame can differ at
most by a rotation. We began our consideratione 1in the rest frame and now
switch to the comoving frame which is more closely related to the lab
trajectory of the particle.

In the Appendix it is shown that a véctor, 8, which 1s constant in

the rest frame obeys

] -+

—-—=Y 8 & .
dt X . 2
relative to the comoving frame, where
+ ~ ~
W= 0 x 48 6
X I . | (6)

That is, s precesses with frequency Y& relative to the coordinate triad

? de

precession. Equation (4) in the comoving frame is thus

& Y RN ”
comoving est

. For this, we use the

formed by & and w in the comoving frame. This 1s the so-called Thomas

h°>

Y
" To ecalculate W from equation (6), we need d

Fu where u is the

ja
|0 o

relativistic form of the Lorentz force: du
- dt

four-veloeity: u = (Y,Yg),and F is the electromagnetic fleld tensor:

F = 0 E1 E2 r E3
—El 0 B3 ~B2
—E2 —B3 0 Bl
—Eq B? —Bl 4]



”~
Solving for de/dt we get

F > + AA ~
R e [E-(F «0)2 9 xB '
dt " m Y8 + Y (8)
and, from equation (6),
> __.e |[B-(®B ML L xE 9
w . 5 +W (9

Expression (8) is strictlv true only in homogeneous fields.6 Tn
an inhomogeneous magnetic field there is an additional force on the
' >+ >
particle due to the magnetic moment interaction, V(i - B), However,
>

-3
this is extremely small compared to the usual magnetic force: ecf x B,

> -
For example, suppose U is parallel to ﬁ, and E i1s normal to B. Then

— e o A A

Bec B 2mc B B R B
using p = éﬁ/Zm, and X = fifme, the Compton wavelength., VB/B might be
as great as 0.1 for B = 10 KG and VB = 1 KG in 1 em. For protons
A = 10-13 cﬁ. So, for B = 0.1 protons (45MeV) the ratio 1s of the
order of 10713, Hence the formulas derdived in this note are applicable

to ordinary non-homogeneous fields.



-

Substituting equation (9) into (7) gives

L G-DFxG-G- 00 +SEPx G0
e [&-1) - & C @ oxE (10)
" [Y(?_ 1) zy] Pw L xE)

This is the main result for precession of the polarization with respect

- -+
to the comoving frame, If dP/dt = 0 in equation (10), P is constant

fal ~

Y
with repsect to the coordinate triad formed by %, d&/dt and w.

-3
From now on, we put E = 0,

>

~ > >
Suppose 2 1is parallel to B. Then %E = g.§__ P x B which is just
t my

the classical result except for the time dilation factor ¥. This effect

has been utilized in measurements of the electron's gyromagnetic ratio.7

A

-
.+
Suppose £ is perpendicular to B. Then gﬁ = E—(g.— P xBE. A
: t m

Dirae particle would not precess at all in this case, From equation (9)

~

g%—= ﬁ? 2 x B. Thus the precession of P is y(% - 1) times that of &.

Thus if the particle is bent by OR’ the polarization precessaes by

0 =vy(E& - 1)0
13 Y(z ) L (11)
This result is useful for quick calculations as to the effect of a bending
magnet on the polarization. For a slow proton, (11) gives ﬂp =2 QR.
Hence a 45° bending magnet can interchange transverse and longitudinal

- . ‘ ‘
polarizations if P is perpendicular to ﬁ, whiie a 90° magnet merelv
f

) 5 N
changes the sign of the polarization. 0Of course 1f P is parallel to B,

the precession has no physical effect. The frequency of precession is



% -(%-_ 1)B, which does not depend on Y. Hence in a magnetic-field
a fest muon  would undergo moré spin precgsaion than a alow muon in
its lifetime, which is proportional to Y. 'This allqws a more precise
determination of thé‘u— gyromagnetic ratio.?

We now consider the case where Efis neither perpendicular nor
parallel to ﬁ, so that the trajectory 1s helical. F¥From equation (10)

.
we gee that the polarization no longer precesses about B, but rather

about B' = _ﬁJ_ + 8% %
_ 11
2Y(§ 1)

-+ ~ !
If we designate the angle between. B and § by 0, and the angle between

» a vector in the plane formed by B and 2.

B' and E by o', then
tan Q' = G% - 1)§I tan ©

= ,64 Ytan O for protons.

. N .
When ¥ = 1,56, tan ©' = tan @ and B' = B, For protons, ¥ = 1.56 occurs

at & kinetic energy of 525 MeV, As y » », tan O' + 1 and ; precegses
about the transverse part of E. For applications to many bending magnets,
E will be nearly normal to E and this effect will be small. A first

order correction to equation (11) is possible by makineg an "effective
edge™ approximation to the magnetic fieid. That is, revlace the actual,
spatially-varying field with a constant field which produces the same
total bend in the pafticle trajectory. Then ] . E 1s a constant, so that
;' is constant in magnitude, and precesses about B at the same frequency

as §.

The corrected form of equation (11) is

0 =y&-1n o [F]/]%
P ) p



or

0 =Y@-1) 8, /1+cos” 0 (B __-1)7 (12)
P 2 Y(g - 2) |
- ~
wvhere © 1s the angle between B and %£. Note, nowever, that in equation
: ‘ >
(11), both Op and Oy are azimuthal angles measured with respect to B,

while in (12), Op 1s with respect to 5.



APPENDIX: - THE THOMAS PRECESSION

We wish to find the time dependence in the comoving frame of a
vector which 18 constant in the particle's.rest frame.

‘ <>
Consider the four-vector s = (0,s) in the rest frame, satisfying

=

= 0. Let u be the four-velocity of the particle, so that in the

|+ .
rest frame, u = (1,0), 'Thus in the rest frame y * g = 0, so this 1s

d(u * s) 48 ., 4 = ~g .du
true in all frames. Further, —1—3?———. 0, or i s i

This suggests

o _ _, . du,
dt s a3’ v (A1)

as the covariant form of the rest frame condition d8 = 0. By considering
dt

this equation in the rest ffame, we see that it is correct.

o o 1
Consider the lab frame where s = (s;, s5.) and u = (y Yg) Y =
L 1 ] ]
/1 - g2
o =+ +
The condition u * 8 = 0 implies SL = sI .
Defining £ = g/B we can write, using (Al),
Y S T R
drt L dt L dt
2 > o
a% 1dy ~»
- o By 4o L dY LAY 2
« (Y 1)(3L dT) + e (aL ) (A2)

Thus in the lab frame, gi does not appear to be precessing; a lab
‘ >
observer does not see the Thomas precegsion, although dsL/dT # 0,
Consider, however, the comoving frame, which is instantaneously

related to the lab frame by a Lorentz transformation in the direction 2.




In the lab frame s = (EL . %, EL)

In the comoving frame s = (0, Ec)

The Lorentz transformation gives

> = - A
SL =s, + (y ~ 1)(5c A4 (A3)
> > 1_ >, ~on
s, = SL + QJ 1) (SL 0L (AL)

Differentiating (A4) with respect to T and using (A2) gives

dg ~ N ~
& . R LY A 2 1 >, H&
ar = 0D g G~ sy 5%)
Equation (A3) then can be used to find
dg o ~ d0
dg. » d
;I'T—c= (Y -1 [(‘s*c ' d—.gr')ﬁ - (3, * Q)a%
or
ds A
c _ > S de A5
Pt (v - 1 8, X (L x ¥z (A5)

- .
Thus 5, Precesses uniformly according to a comoving observer. This is
the famous Thomas precession.

In the lab frame, Q& (Q dg ) x 2 so that 2 x-g& has the

significance of being the instantaneous rotation of the trajectorv. Since

d ~
E% is transverse to %, this expression holds in the comoving frame also,

Thuslthe part of 93¢ coming from the -1 in the factor Y - 1 of equation
dr

(A5) 18 due to the rotation of the trajectory in the comoving frame.




N ‘
‘Hence the precession of 8, relative to the precession of the tralectorv is

L.
F“Yﬂcxmx:—f (A6)
in the comoving frame.

The covariant deseription of the precession used in the appendix may
be éxtended to include the spin precession caused by magnetic fields.
This is the approach of Bargmann, Michel and Teledgi5 which 1s exnanded
upen by Hagedorn.10 The speclalization to the comoving frame is
straightforward, but lengthy. However, they do not do it. The result

of such analysis 1s equation (10).
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