Remarks on Configuration, Assembly and Stringing of the BABAR Drift Chamber

K.T. McDonald Princeton U. Feb. 22, 1996

1. General

2. Specific to the Inner and Outer Cylinders

Survey of Large Cylindrical Drift Chambers

 \Rightarrow many variations of drift-chamber concept can be built.

Changes in the BABAR Environment

Forward aerogel system will not be implemented \Rightarrow 20 cm more in z available for tracks with highest momenta.

PEP-II support tube now at least 1.2 X_0 thick \Rightarrow loss of precision linking between SVT and drift chamber. \Rightarrow slight physics cost in making the drift chamber inner tube thick enough to be load bearing.

Additional resources available to drift chamber project.

 \Rightarrow Timely to review status of drift chamber.

Since the drift chamber may already be somewhat behind schedule, changes that incur delays are to be discouraged.

[Conversely, changes that simplify fabrication and reduce risk would tend to speed up construction and should be considered.]

Using the Space Vacated by the Aerogel

We should plan now to use this space.

- 1. Build chamber as presently planned, but slide it forward 20 cm.
- 2. Build chamber to present design but 20 cm longer.
- 3. Reconfigure forward endplate.

– Biconical design is structurally agressive $(\Rightarrow$ fabrication delays likely in my opinion).

– Wire load is $\approx 1/6$ atm. inward \Rightarrow chamber is kind of a vacuum vessel.

– Favored mechancial structure of endplate is inwardly curved surface (as used in VENUS and SLD chambers).

– Carbon-fiber layup favors shape that can be deformed into a plane without stretching \Rightarrow inward cone (as used in OPAL chamber).

 \sim \sim

 \mathcal{L}

Figure 2: r-z dimensions of the BABAR drift chamber.

 $\hat{\mathbf{z}}_1$

 $\mathcal{F}_{\mathcal{A}}$

Civil Engineering Department:

J.-H. Prévost, author of FEA program DYNAFLOW on UNIX machines.

D.B. Billington, expert on domes; book: Thin Shell Concrete Structures.

Fig. 3-12 Membrane stress resultants on various domes. (a) Elliptical dome. (b) Spherical dome. (c) Conoidal dome. (d) Conical dome.

Fig. 4-15 (a) Dome-ring-wall system under dome loads.

I strongly encourage a backup solution to the foward endplate based on an inward cone or sphere – possibly made of aluminum.

[3rd of 3 SLD Al blanks available: $2m \times 2m \times 20$ cm: "When in doubt, hog it out".]

The Inner Cylinder

(General remarks, details later)

PEP-II structural concerns and rf shielding issues will likely add, not reduce, mass of the support tube.

A load-bearing inner cylinder could reduce endplate axial deformation under wire load to $\approx 100 \mu$, and radial deformation to $\approx 50 \ \mu \text{m}$.

 $10 \times$ safety factor against buckling \Rightarrow inner cylinder of be 1.5 mm carbon fiber (if modulus of $1.4 \times 10^{11} = 2E_{\text{al}}$); $\Rightarrow 0.5\% X_0$.

[TASSO, SLD, CDF and ZEUS chambers have load-bearing inner cylinders.]

Outer cylinder need be only 1.6 mm thick carbon fiber (total wall thickness less than present design).

Benefits If Chamber Is Assembled Before Stringing

Endplate-cylinder joints could be leak tested and load tested (and repaired) prior to stringing.

Prestressing of endplate not needed.

Chamber would be strung vertically,

 \Rightarrow No inside robots or inside wire handling needed.

Semiautomatic wire feeding as in CLEO II and ZEUS.

No need to rotate chamber about horizontal axis for wire repair.

Costs

Only one crew can string stereo wires \Rightarrow longer stringing time.

Tall cleanroom needed (but needed anyway for vertical wire repair).

Inner Cylinder Calculations

(see note of 2/7/96 by KTM, on DC Web Page)

Analytic calculations available for flat, annular plates, (Roark's Formulas, by Young, 6th ed., McGraw-Hill, 1989). Implemented in PC program TK Solver.

Flat Al plate, 3.2 cm thick, $r_1 = 25$ cm, $r_2 = 80$ cm.

Modulus reduced 15% for hole.

When supported at outer radius only, max deflection $= 3.3$ mm under 3500 kg wire load $(deflection angle = 6 mrad).$

Flat Plate, Supported Both Edges

3500 kg load distributed 1400 kg on inner cylinder, 2100 kg on outer.

Max deflection = 115 μ m (max angle = 0.8 mrad). Table 24 - Case 2: Deflection .02 0 | -.02 Deflection mm Deflection mm -.04 -.06 -.08 -.1 $-12 +$
0 0 100 200 300 400 500 600 700 800 Radial Location mm

FEA Studies of Front Endplate

By C. Lu, using ALGOR running on a Pentium PC.

Factor of 8 reduction in axial deformation when endplate supported both at inner and outer radii.

Details in another talk.

Buckling of Thin Cylindrical Shells

$$
F_{\text{max}} = \frac{4\pi^2 EI}{l^2},\tag{Euler}
$$

For a tube, the momentum of inertia is $I = \pi r^3 t$,

$$
F_{\text{max}} = \frac{4\pi^3 E r^3 t}{l^2}, \qquad \text{(tube)}.
$$

Thin tubes buckle into a higher-order mode:

 $F_{\text{max}} =$ $2\pi E t^2$ r $3(1-\nu^2)$, (Timoshenko,1910),

Short wavelength \Rightarrow no dependence on r or l.

Fig. 2.6. The Yoshimura-pattern

Comparison of theoretical and experimental values for cylinders subjected to axial compression.

Semi-Empirical Fit to Buckling Data

$$
F_{\text{max}} = \frac{\pi^3 E t^{9/4} r^{1/4}}{6l^{1/2} (1 - \nu^2)^{5/8}},
$$
 (semi-empirical),

which is a translation of the fit $k_a = Z^{3/4}$ to the data on both axial and torsional buckling.

Laboratory Test

Cylinder of radius $6''$ and length $36''$ from a sheet of G-10 about $0.018'' = 450 \mu m$ thick.

The seam of the tube consisted of a $1''$ overlap secured with pop rivets every inch.

A data sheet lists the modulus of G-10 as 2.5×10^6 psi.

We assume the Poisson ratio is 0.3. The calculated buckling force is then 425 pounds.

G-10 Tube Buckled Under 715-Lb Load

 \Rightarrow Semi-empirical formula gives a lower bound on the buckling force.