
Princeton/BaBar/TNDC-96-44
K. McDonald
June 10, 1996

Deadtime When Using a FIFO Buffer

1 Introduction

This note concerns the calculation of deadtime in a data-acquisition system in which ‘events’
(here taken as a record of a fixed number of bits that is generated at some random time)
are stored temporarily in a first-in/first-out buffer (FIFO) before being processed further.
The average time between events is t1. Whenever an event reaches the ‘first’ position in the
FIFO processing begins on this event. After a processing time of t0 the first event in the
FIFO is cleared out and the next event (if any) becomes the first. The FIFO can store a
maximum of n events. Whenever the FIFO becomes full there is a a deadtime of t0 before
another event can be accepted. A general expression for the deadtime is somewhat complex,
so we first consider limiting cases, then present a solution suitable for numerical evaluation,
and finally give closed-form expressions for FIFO’s with four or fewer event buffers.

2 Limiting Cases

Before analyzing the problem in detail we consider the limit of large and small values of
t0/t1.

When the time between events t1 is small compared to the processing time t0, the dead-
time approaches unity:

lim
t0/t1→∞

D = 1.

When the time between events t1 is large compared to the processing time t0 the prob-
ability that another event occurs during the processing time of a previous event is small,
and approaches t0/t1. The FIFO has a high probability of being empty at any time. An
event will not be accepted only if all n buffers in the FIFO are full. The probability for
this is (t0/t1)

n, since we can ignore the small probability that the FIFO contained events at
time t0 before the arrival of the test event. However, when we discuss n events occurring in
some time interval, we mean an ordered sequence: the first event must come earlier than the
second. Therefore we must divide the probability (t0/t1)

n for any group of n events during
time t0 by n! to obtain the probability of an ordered sequence:

lim
t0/t1→0

D =
1

n!

(
t0
t1

)n

.

This is, of course, the limiting result for the Poisson distribution,

(t0/t1)
ne−t0/t1

n!
,

that n events occur in time t0.

1



3 General Analysis

The general analysis is more intricate because we cannot assume the FIFO is empty at any
given time. We designate the probability that at some time the FIFO already contains i
events as Pi. For an n-deep FIFO we then have the normalization condition

n∑

i=0

Pi = 1.

An event will be accepted so long as at least one buffer of the n-deep FIFO is free. Thus the
deadtime is the probability that all n buffers are full: D = Pn.

We assume the probabilities Pi are independent of time.
We now relate the values of Pi at time t = 0 to those at an earlier time. It seems simplest

to chose that time to be t = −t0, exactly one event-processing time earlier. Then in the
absence of any new events in the interval [−t0, 0] the number of events in the FIFO will
decrease by one.

We write

Pi(t = 0) =
n∑

j=0

Pj(t = −t0)Qi,j, or just Pi =
n∑

j=0

PjQi,j,

where Qi,j is the probability that the FIFO makes a transition from containing j to i events
during the interval [−t0, 0]. We will find simple expressions for the Qi,j except for the Qn,j

and for Qn−1,n. The complexity in these cases is that during times when the FIFO is full
any number of events can arrive without changing the state of the FIFO.

To have i < n events in the FIFO at t = 0 starting from zero events in the FIFO at
t = −t0 we must have exactly i events arriving in the interval [−t0, 0]. Using the Poisson
distribution we have

Qi,0 =
(t0/t1)

ie−t0/t1

i!
, i < n.

If the FIFO already contains j > 0 events at t = −t0 the first of these will be processed
before t = 0 leaving j − 1 events in the FIFO. To end up with i < n events in the FIFO
at t = 0 exactly i − (j − 1) events must arrive during the interval [−t0, 0]. As a negative
number events is impossible, the Qi,j will be nonzero only for j ≤ i + 1. The case j = n is
special because before the processing of the first event in the FIFO is completed any number
of events could arrive without changing the state of the FIFO; these events would all be
rejected. Hence Qn−1,n must be treated separately. The simple cases are

Qi,j = 0, j > i + 1,

Qi,j =
(t0/t1)

i−j+1e−t0/t1

(i− j + 1)!
, i < n, 0 < j ≤ i + 1, {i, j} 6= {n− 1, n}.

For Qn−1,n, zero events can arrive after processing has finished on the first event in the
FIFO. We suppose that this completion time is random within the interval [−t0, 0]. Prior to
that time any number of events can arrive (and be rejected) because the FIFO is still full.
Hence

Qn−1,n =
∫ 0

−t0

dt

t0
e−t/t1 =

t1
t0

(
1− e−t0/t1

)
.

2



We do not need the Qn,j to complete the solution. We have expressions for the Pi for
i < n so that Pn can be found using the normalization that

∑
Pi = 1.

A consistency check on the expression for Qn−1,n can be found by considering Qn,n (the
simplest of the Qn,j). Here we need exactly one event in the interval [t, 0] after processing
of the first event in the FIFO was finished at time t.

Qn,n =
∫ 0

−t0

dt

t0

t

t1
e−t/t1 = 1− t1

t0

(
1− e−t0/t1

)
.

We also note that
∑

i Qi,j is the probability of a transition to any number of events in the
FIFO at t = 0 starting from j events at t = −t0. This probability is one:

n∑

i=0

Qi,j = 1.

For j = n only Qn−1,n and Qn,n are non zero, so we must have Qn−1,n + Qn,n = 1, which is
satisfied by our expressions.

We can now use the n− 1 relations

Pi =
i+1∑

j=0

Qi,jPj

(recalling that Qi,j = 0 for j > i + 1) to deduce the constants Ci defined by

Pi = CiPi+1.

Then we can also write

Pi = Pj

j−1∏

k=i

Ck, j > i.

The iterative procedure to find the Ci uses

Pi =
i+1∑

j=0

Qi,jPj = Qi,i+1Pi+1 + Pi

i∑

j=0

Qi,j

i−1∏

k=j

Ck,

where the ill-defined product
i−1∏

k=i

Ck

is set to one. Then

Ci =
Qi,i+1

1−∑i
j=0 Qi,j

∏i−1
k=j Ck

.

Now we can rewrite the normalization condition

n∑

i=0

Pi = 1

as

1 = Pn

n∑

i=0

n−1∏

j=i

Cj,

3



so the FIFO deadtime is

D = Pn =
1

∑n
i=0

∏n−1
j=i Cj

.

For example, this procedure begins with

P0 = Q0,0P0 + Q0,1P1,

which yields

P0 =
Q0,1

1−Q0,0

P1 ≡ C0P1.

Next
P1 = Q1,0P0 + Q1,1P1 + Q1,2P2,

which yields

P1 =
Q1,2

1−Q1,0C0 −Q1,1

P2 ≡ C1P2,

etc.
Figure 1 shows the deadtime fraction D calculated by the above prescription as a function

of a ≡ t0/t1 from FIFO’s with up to six event buffers. The Fortran program fifo.for for
this can be found on the Princeton Technical Notes Web Page.

1010.10.01

a = (time to process an event)/(ave. time between events)

1

0.1

0.01

0.001

D
ea

dt
im

e 
fr

ac
tio

n 1 event buffer

2 buffers

3 buffers

4 buffers

5 buffers

6 buffers

Deadtime in an n-deep FIFO buffer

D = a^n /n! for small a

Figure 1: Deadtime fraction in an n-deep FIFO buffer.

4



4 Closed-Form Expressions

I have had the energy to carry out the above procedure analytically only up to n = 4. The
forms below all display the limit that D → 1 as a ≡ t0/t1 →∞. It is not hard to verify that
D → an/n! for small a.

4.1 n = 1

D = P1 =
1

1 + 1/a
=

a

1 + a
.

D(1) = 0.50.

4.2 n = 2

D = P2 =
ea − 1− a

ea − 1− a + (ea − 1)/a
.

D(1) = 0.30.

4.3 n = 3

D = P3 =
ea − 1− 2a− ae−a + a2e−a/2

ea − 1− 2a− ae−a + a2e−a/2 + (ea − 1)(1− ae−a)/a
.

D(1) = 0.20

4.4 n = 4

D = P4 =
ea − 1− 3a + 2ae−a(1 + a)− a2e−2a(1/2 + a/6)

ea − 1− 3a + 2ae−a(1 + a)− a2e−2a(1/2 + a/6) + (ea − 1)(1− 2ae−a + a2e−2a/2)/a
.

D(1) = 0.15.

5


